Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,098 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Inspired by https://github.com/DepthAnything/Depth-Anything-V2
import os
from typing import List, Dict, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from .head_act import activate_head
from .utils import create_uv_grid, position_grid_to_embed
class DPTHead(nn.Module):
"""
DPT Head for dense prediction tasks.
This implementation follows the architecture described in "Vision Transformers for Dense Prediction"
(https://arxiv.org/abs/2103.13413). The DPT head processes features from a vision transformer
backbone and produces dense predictions by fusing multi-scale features.
Args:
dim_in (int): Input dimension (channels).
patch_size (int, optional): Patch size. Default is 14.
output_dim (int, optional): Number of output channels. Default is 4.
activation (str, optional): Activation type. Default is "inv_log".
conf_activation (str, optional): Confidence activation type. Default is "expp1".
features (int, optional): Feature channels for intermediate representations. Default is 256.
out_channels (List[int], optional): Output channels for each intermediate layer.
intermediate_layer_idx (List[int], optional): Indices of layers from aggregated tokens used for DPT.
pos_embed (bool, optional): Whether to use positional embedding. Default is True.
feature_only (bool, optional): If True, return features only without the last several layers and activation head. Default is False.
down_ratio (int, optional): Downscaling factor for the output resolution. Default is 1.
"""
def __init__(
self,
dim_in: int,
patch_size: int = 14,
output_dim: int = 4,
activation: str = "linear",
conf_activation: str = "expp1",
features: int = 256,
out_channels: List[int] = [256, 512, 1024, 1024],
intermediate_layer_idx: List[int] = [4, 11, 17, 23],
pos_embed: bool = True,
feature_only: bool = False,
down_ratio: int = 1,
) -> None:
super(DPTHead, self).__init__()
self.patch_size = patch_size
self.activation = activation
self.conf_activation = conf_activation
self.pos_embed = pos_embed
self.feature_only = feature_only
self.down_ratio = down_ratio
self.intermediate_layer_idx = intermediate_layer_idx
self.norm = nn.LayerNorm(dim_in)
# Projection layers for each output channel from tokens.
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=dim_in,
out_channels=oc,
kernel_size=1,
stride=1,
padding=0,
)
for oc in out_channels
]
)
# Resize layers for upsampling feature maps.
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
self.scratch = _make_scratch(
out_channels,
features,
expand=False,
)
# Attach additional modules to scratch.
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features)
self.scratch.refinenet2 = _make_fusion_block(features)
self.scratch.refinenet3 = _make_fusion_block(features)
self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False)
head_features_1 = features
head_features_2 = 32
if feature_only:
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
conv2_in_channels = head_features_1 // 2
# self.scratch.output_conv2 = nn.Sequential(
# nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1),
# nn.ReLU(inplace=True),
# nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
# )
# self.scratch.output_conv3是为了normal estimation而修改
# self.scratch.output_conv3 = nn.Sequential(
# # 第1层 3x3: 从 in_channels=1280 -> 512
# nn.Conv2d(conv2_in_channels, 512, kernel_size=3, stride=1, padding=1),
# nn.ReLU(inplace=True),
# # 第2层 3x3: 512 -> 512
# nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
# nn.ReLU(inplace=True),
# # 第3层 3x3: 512 -> 256
# nn.Conv2d(512, head_features_2, kernel_size=3, stride=1, padding=1),
# nn.ReLU(inplace=True),
# # 最后一层 1x1: 256 -> 4
# nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
# )
def make_output_conv(
self,
in_channels: int,
output_dim: int = 4
):
conv_mid1 = in_channels //2
conv_mid2 = conv_mid1
conv_mid3 = in_channels // 4
layers = nn.Sequential(
# 第1层 3x3: 从 in_channels -> conv_mid1
nn.Conv2d(in_channels, conv_mid1, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
# 第2层 3x3: conv_mid1 -> conv_mid2
nn.Conv2d(conv_mid1, conv_mid2, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
# 第3层 3x3: conv_mid2 -> conv_mid3
nn.Conv2d(conv_mid2, conv_mid3, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
# 第4层 1x1: conv_mid3 -> output_dim
nn.Conv2d(conv_mid3, output_dim, kernel_size=1, stride=1, padding=0),
).cuda().to(torch.bfloat16)
return layers
def forward(
self,
aggregated_tokens_list: List[torch.Tensor],
images: torch.Tensor,
patch_start_idx: int,
frames_chunk_size: int = 10,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Forward pass through the DPT head, supports processing by chunking frames.
Args:
aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers.
images (Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1].
patch_start_idx (int): Starting index for patch tokens in the token sequence.
Used to separate patch tokens from other tokens (e.g., camera or register tokens).
frames_chunk_size (int, optional): Number of frames to process in each chunk.
If None or larger than S, all frames are processed at once. Default: 8.
Returns:
Tensor or Tuple[Tensor, Tensor]:
- If feature_only=True: Feature maps with shape [B, S, C, H, W]
- Otherwise: Tuple of (predictions, confidence) both with shape [B, S, 1, H, W]
"""
B, S, _, H, W = images.shape
# If frames_chunk_size is not specified or greater than S, process all frames at once
if frames_chunk_size is None or frames_chunk_size >= S:
return self._forward_impl(aggregated_tokens_list, images, patch_start_idx) #frames_chunk_size:一次最多处理几帧
# Otherwise, process frames in chunks to manage memory usage
assert frames_chunk_size > 0
# Process frames in batches
all_preds = []
all_conf = []
for frames_start_idx in range(0, S, frames_chunk_size):
frames_end_idx = min(frames_start_idx + frames_chunk_size, S)
# Process batch of frames
if self.feature_only:
chunk_output = self._forward_impl(
aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx
)
all_preds.append(chunk_output)
else:
chunk_preds, chunk_conf = self._forward_impl(
aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx
)
all_preds.append(chunk_preds)
all_conf.append(chunk_conf)
# Concatenate results along the sequence dimension
if self.feature_only:
return torch.cat(all_preds, dim=1)
else:
return torch.cat(all_preds, dim=1), torch.cat(all_conf, dim=1)
def _forward_impl(
self,
aggregated_tokens_list: List[torch.Tensor],
images: torch.Tensor,
patch_start_idx: int,
frames_start_idx: int = None,
frames_end_idx: int = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Implementation of the forward pass through the DPT head.
This method processes a specific chunk of frames from the sequence.
Args:
aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers.
images (Tensor): Input images with shape [B, S, 3, H, W].
patch_start_idx (int): Starting index for patch tokens.
frames_start_idx (int, optional): Starting index for frames to process.
frames_end_idx (int, optional): Ending index for frames to process.
Returns:
Tensor or Tuple[Tensor, Tensor]: Feature maps or (predictions, confidence).
"""
if frames_start_idx is not None and frames_end_idx is not None:
images = images[:, frames_start_idx:frames_end_idx].contiguous()
B, S, _, H, W = images.shape#就是图片
patch_h, patch_w = H // self.patch_size, W // self.patch_size
out = []
dpt_idx = 0
# aggregated_tokens_list: [24,B,3,H*W//14 + 4,C] 24是AABlock的个数
for layer_idx in self.intermediate_layer_idx:# 这段代码需要借鉴过来,相当于用transformer多层特征(相同尺寸)模仿conv的mutil-scale特征,有意思
x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:] #[B,3,H*W//14,C]
# 为什么只选[4,11,17,23]这几个layer_idx呢?
# Select frames if processing a chunk
if frames_start_idx is not None and frames_end_idx is not None:
x = x[:, frames_start_idx:frames_end_idx]
x = x.reshape(B * S, -1, x.shape[-1])
x = self.norm(x)
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[dpt_idx](x)
if self.pos_embed:
x = self._apply_pos_embed(x, W, H).to(torch.bfloat16)
x = self.resize_layers[dpt_idx](x)
out.append(x) #一个feature list
dpt_idx += 1
# Fuse features from multiple layers.
out = self.scratch_forward(out)
# Interpolate fused output to match target image resolution.
out = custom_interpolate(
out.float(),
(int(patch_h * self.patch_size / self.down_ratio), int(patch_w * self.patch_size / self.down_ratio)),
mode="bilinear",
align_corners=True,
).to(torch.bfloat16) # feature upsample
if self.pos_embed:
out = self._apply_pos_embed(out, W, H).to(torch.bfloat16)
if self.feature_only:
return out.reshape(B, S, *out.shape[1:])
#out = self.scratch.output_conv2(out)
out = out.reshape(B, S, *out.shape[1:]).flatten(1,2) # B S C H W
in_channels = out.shape[1]
out = self.make_output_conv(in_channels, output_dim=4)(out) # B S 4 H W
preds, conf = activate_head(out, activation='linear', conf_activation=self.conf_activation)
# preds默认使用的是inv_log(x) = exp(x) - 1
preds = preds.permute(0, 3, 1, 2) # B C,H,W
preds = F.normalize(preds, dim=1, p=2, eps=1e-12) # B 1 H W
# conf[:, None, ...] # B 1 H W
return preds, conf.unsqueeze(1) # B 1 H W
def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor:
"""
Apply positional embedding to tensor x.
"""
patch_w = x.shape[-1]
patch_h = x.shape[-2]
pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device)
pos_embed = position_grid_to_embed(pos_embed, x.shape[1])
pos_embed = pos_embed * ratio
pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1)
return x + pos_embed
def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor:
"""
Forward pass through the fusion blocks.
Args:
features (List[Tensor]): List of feature maps from different layers.
Returns:
Tensor: Fused feature map.
"""
layer_1, layer_2, layer_3, layer_4 = features
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
del layer_4_rn, layer_4
out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:])
del layer_3_rn, layer_3
out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:])
del layer_2_rn, layer_2
out = self.scratch.refinenet1(out, layer_1_rn)
del layer_1_rn, layer_1
out = self.scratch.output_conv1(out)
return out
################################################################################
# Modules
################################################################################
def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module:
return FeatureFusionBlock(
features,
nn.ReLU(inplace=True),
deconv=False,
bn=False,
expand=False,
align_corners=True,
size=size,
has_residual=has_residual,
groups=groups,
)
def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module:
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn, groups=1):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = groups
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.norm1 = None
self.norm2 = None
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.norm1 is not None:
out = self.norm1(out)
out = self.activation(out)
out = self.conv2(out)
if self.norm2 is not None:
out = self.norm2(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(
self,
features,
activation,
deconv=False,
bn=False,
expand=False,
align_corners=True,
size=None,
has_residual=True,
groups=1,
):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = groups
self.expand = expand
out_features = features
if self.expand == True:
out_features = features // 2
self.out_conv = nn.Conv2d(
features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups
)
if has_residual:
self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups)
self.has_residual = has_residual
self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if self.has_residual:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = custom_interpolate(output.float(), **modifier, mode="bilinear", align_corners=self.align_corners).to(torch.bfloat16)
output = self.out_conv(output)
return output
def custom_interpolate(
x: torch.Tensor,
size: Tuple[int, int] = None,
scale_factor: float = None,
mode: str = "bilinear",
align_corners: bool = True,
) -> torch.Tensor:
"""
Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate.
"""
if size is None:
size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))
INT_MAX = 1610612736
input_elements = size[0] * size[1] * x.shape[0] * x.shape[1]
if input_elements > INT_MAX:
chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0)
interpolated_chunks = [
nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks
]
x = torch.cat(interpolated_chunks, dim=0)
return x.contiguous()
else:
return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)
|