File size: 20,098 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


# Inspired by https://github.com/DepthAnything/Depth-Anything-V2


import os
from typing import List, Dict, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from .head_act import activate_head
from .utils import create_uv_grid, position_grid_to_embed


class DPTHead(nn.Module):
    """
    DPT  Head for dense prediction tasks.

    This implementation follows the architecture described in "Vision Transformers for Dense Prediction"
    (https://arxiv.org/abs/2103.13413). The DPT head processes features from a vision transformer
    backbone and produces dense predictions by fusing multi-scale features.

    Args:
        dim_in (int): Input dimension (channels).
        patch_size (int, optional): Patch size. Default is 14.
        output_dim (int, optional): Number of output channels. Default is 4.
        activation (str, optional): Activation type. Default is "inv_log".
        conf_activation (str, optional): Confidence activation type. Default is "expp1".
        features (int, optional): Feature channels for intermediate representations. Default is 256.
        out_channels (List[int], optional): Output channels for each intermediate layer.
        intermediate_layer_idx (List[int], optional): Indices of layers from aggregated tokens used for DPT.
        pos_embed (bool, optional): Whether to use positional embedding. Default is True.
        feature_only (bool, optional): If True, return features only without the last several layers and activation head. Default is False.
        down_ratio (int, optional): Downscaling factor for the output resolution. Default is 1.
    """

    def __init__(
        self,
        dim_in: int,
        patch_size: int = 14,
        output_dim: int = 4,
        activation: str = "linear",
        conf_activation: str = "expp1",
        features: int = 256,
        out_channels: List[int] = [256, 512, 1024, 1024],
        intermediate_layer_idx: List[int] = [4, 11, 17, 23],
        pos_embed: bool = True,
        feature_only: bool = False,
        down_ratio: int = 1,
    ) -> None:
        super(DPTHead, self).__init__()
        self.patch_size = patch_size
        self.activation = activation
        self.conf_activation = conf_activation
        self.pos_embed = pos_embed
        self.feature_only = feature_only
        self.down_ratio = down_ratio
        self.intermediate_layer_idx = intermediate_layer_idx

        self.norm = nn.LayerNorm(dim_in)

        # Projection layers for each output channel from tokens.
        self.projects = nn.ModuleList(
            [
                nn.Conv2d(
                    in_channels=dim_in,
                    out_channels=oc,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                )
                for oc in out_channels
            ]
        )

        # Resize layers for upsampling feature maps.
        self.resize_layers = nn.ModuleList(
            [
                nn.ConvTranspose2d(
                    in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
                ),
                nn.ConvTranspose2d(
                    in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
                ),
                nn.Identity(),
                nn.Conv2d(
                    in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
                ),
            ]
        )

        self.scratch = _make_scratch(
            out_channels,
            features,
            expand=False,
        )

        # Attach additional modules to scratch.
        self.scratch.stem_transpose = None
        self.scratch.refinenet1 = _make_fusion_block(features)
        self.scratch.refinenet2 = _make_fusion_block(features)
        self.scratch.refinenet3 = _make_fusion_block(features)
        self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False)

        head_features_1 = features
        head_features_2 = 32

        if feature_only:
            self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1)
        else:
            self.scratch.output_conv1 = nn.Conv2d(
                head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
            )
            conv2_in_channels = head_features_1 // 2

            # self.scratch.output_conv2 = nn.Sequential(
            #     nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1),
            #     nn.ReLU(inplace=True),
            #     nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
            # )
            # self.scratch.output_conv3是为了normal estimation而修改 
            # self.scratch.output_conv3 = nn.Sequential(
            #      # 第1层 3x3: 从 in_channels=1280 -> 512
            # nn.Conv2d(conv2_in_channels, 512, kernel_size=3, stride=1, padding=1),
            # nn.ReLU(inplace=True),

            # # 第2层 3x3: 512 -> 512
            # nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            # nn.ReLU(inplace=True),

            # # 第3层 3x3: 512 -> 256
            # nn.Conv2d(512, head_features_2, kernel_size=3, stride=1, padding=1),
            # nn.ReLU(inplace=True),

            # # 最后一层 1x1: 256 -> 4
            # nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
            # )
    def make_output_conv(
            self,
            in_channels: int,
            output_dim: int = 4
        ):
       
        conv_mid1 = in_channels //2
        conv_mid2 = conv_mid1
        conv_mid3 = in_channels // 4
        
        layers = nn.Sequential(
            # 第1层 3x3: 从 in_channels -> conv_mid1
            nn.Conv2d(in_channels, conv_mid1, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),

            # 第2层 3x3: conv_mid1 -> conv_mid2
            nn.Conv2d(conv_mid1, conv_mid2, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),

            # 第3层 3x3: conv_mid2 -> conv_mid3
            nn.Conv2d(conv_mid2, conv_mid3, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),

            # 第4层 1x1: conv_mid3 -> output_dim
            nn.Conv2d(conv_mid3, output_dim, kernel_size=1, stride=1, padding=0),
        ).cuda().to(torch.bfloat16)

        return layers
    def forward(
        self,
        aggregated_tokens_list: List[torch.Tensor],
        images: torch.Tensor,
        patch_start_idx: int,
        frames_chunk_size: int = 10,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        Forward pass through the DPT head, supports processing by chunking frames.
        Args:
            aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers.
            images (Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1].
            patch_start_idx (int): Starting index for patch tokens in the token sequence.
                Used to separate patch tokens from other tokens (e.g., camera or register tokens).
            frames_chunk_size (int, optional): Number of frames to process in each chunk.
                If None or larger than S, all frames are processed at once. Default: 8.

        Returns:
            Tensor or Tuple[Tensor, Tensor]:
                - If feature_only=True: Feature maps with shape [B, S, C, H, W]
                - Otherwise: Tuple of (predictions, confidence) both with shape [B, S, 1, H, W]
        """
        B, S, _, H, W = images.shape

        # If frames_chunk_size is not specified or greater than S, process all frames at once
        if frames_chunk_size is None or frames_chunk_size >= S:
            return self._forward_impl(aggregated_tokens_list, images, patch_start_idx) #frames_chunk_size:一次最多处理几帧

        # Otherwise, process frames in chunks to manage memory usage
        assert frames_chunk_size > 0

        # Process frames in batches
        all_preds = []
        all_conf = []

        for frames_start_idx in range(0, S, frames_chunk_size):
            frames_end_idx = min(frames_start_idx + frames_chunk_size, S)

            # Process batch of frames
            if self.feature_only:
                chunk_output = self._forward_impl(
                    aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx
                )
                all_preds.append(chunk_output)
            else:
                chunk_preds, chunk_conf = self._forward_impl(
                    aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx
                )
                all_preds.append(chunk_preds)
                all_conf.append(chunk_conf)

        # Concatenate results along the sequence dimension
        if self.feature_only:
            return torch.cat(all_preds, dim=1)
        else:
            return torch.cat(all_preds, dim=1), torch.cat(all_conf, dim=1)

    def _forward_impl(
        self,
        aggregated_tokens_list: List[torch.Tensor],
        images: torch.Tensor,
        patch_start_idx: int,
        frames_start_idx: int = None,
        frames_end_idx: int = None,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        Implementation of the forward pass through the DPT head.

        This method processes a specific chunk of frames from the sequence.

        Args:
            aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers.
            images (Tensor): Input images with shape [B, S, 3, H, W].
            patch_start_idx (int): Starting index for patch tokens.
            frames_start_idx (int, optional): Starting index for frames to process.
            frames_end_idx (int, optional): Ending index for frames to process.

        Returns:
            Tensor or Tuple[Tensor, Tensor]: Feature maps or (predictions, confidence).
        """
        if frames_start_idx is not None and frames_end_idx is not None:
            images = images[:, frames_start_idx:frames_end_idx].contiguous()

        B, S, _, H, W = images.shape#就是图片

        patch_h, patch_w = H // self.patch_size, W // self.patch_size

        out = []
        dpt_idx = 0
        # aggregated_tokens_list: [24,B,3,H*W//14 + 4,C] 24是AABlock的个数
        for layer_idx in self.intermediate_layer_idx:# 这段代码需要借鉴过来,相当于用transformer多层特征(相同尺寸)模仿conv的mutil-scale特征,有意思
            x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:] #[B,3,H*W//14,C]
            # 为什么只选[4,11,17,23]这几个layer_idx呢?
            # Select frames if processing a chunk
            if frames_start_idx is not None and frames_end_idx is not None:
                x = x[:, frames_start_idx:frames_end_idx]

            x = x.reshape(B * S, -1, x.shape[-1])

            x = self.norm(x)

            x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))

            x = self.projects[dpt_idx](x)
            if self.pos_embed:
                x = self._apply_pos_embed(x, W, H).to(torch.bfloat16)
            x = self.resize_layers[dpt_idx](x)

            out.append(x) #一个feature list
            dpt_idx += 1

        # Fuse features from multiple layers.
        out = self.scratch_forward(out)
        # Interpolate fused output to match target image resolution.
        out = custom_interpolate(
            out.float(),
            (int(patch_h * self.patch_size / self.down_ratio), int(patch_w * self.patch_size / self.down_ratio)),
            mode="bilinear",
            align_corners=True,
        ).to(torch.bfloat16) # feature upsample

        if self.pos_embed:
            out = self._apply_pos_embed(out, W, H).to(torch.bfloat16)

        if self.feature_only:
            return out.reshape(B, S, *out.shape[1:])

        #out = self.scratch.output_conv2(out)
        out = out.reshape(B, S, *out.shape[1:]).flatten(1,2) # B S C H W
        in_channels = out.shape[1]
        out = self.make_output_conv(in_channels, output_dim=4)(out) # B S 4 H W
        preds, conf = activate_head(out, activation='linear', conf_activation=self.conf_activation) 
        # preds默认使用的是inv_log(x) = exp(x) - 1
        preds = preds.permute(0, 3, 1, 2) # B C,H,W
        preds = F.normalize(preds, dim=1, p=2, eps=1e-12) # B 1 H W
        # conf[:, None, ...] # B 1 H W
        return preds, conf.unsqueeze(1) # B 1 H W

    def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor:
        """
        Apply positional embedding to tensor x.
        """
        patch_w = x.shape[-1]
        patch_h = x.shape[-2]
        pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device)
        pos_embed = position_grid_to_embed(pos_embed, x.shape[1])
        pos_embed = pos_embed * ratio
        pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1)
        return x + pos_embed

    def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor:
        """
        Forward pass through the fusion blocks.

        Args:
            features (List[Tensor]): List of feature maps from different layers.

        Returns:
            Tensor: Fused feature map.
        """
        layer_1, layer_2, layer_3, layer_4 = features

        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        layer_4_rn = self.scratch.layer4_rn(layer_4)

        out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
        del layer_4_rn, layer_4

        out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:])
        del layer_3_rn, layer_3

        out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:])
        del layer_2_rn, layer_2

        out = self.scratch.refinenet1(out, layer_1_rn)
        del layer_1_rn, layer_1

        out = self.scratch.output_conv1(out)
        return out


################################################################################
# Modules
################################################################################


def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module:
    return FeatureFusionBlock(
        features,
        nn.ReLU(inplace=True),
        deconv=False,
        bn=False,
        expand=False,
        align_corners=True,
        size=size,
        has_residual=has_residual,
        groups=groups,
    )


def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module:
    scratch = nn.Module()
    out_shape1 = out_shape
    out_shape2 = out_shape
    out_shape3 = out_shape
    if len(in_shape) >= 4:
        out_shape4 = out_shape

    if expand:
        out_shape1 = out_shape
        out_shape2 = out_shape * 2
        out_shape3 = out_shape * 4
        if len(in_shape) >= 4:
            out_shape4 = out_shape * 8

    scratch.layer1_rn = nn.Conv2d(
        in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer2_rn = nn.Conv2d(
        in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer3_rn = nn.Conv2d(
        in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    if len(in_shape) >= 4:
        scratch.layer4_rn = nn.Conv2d(
            in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
        )
    return scratch


class ResidualConvUnit(nn.Module):
    """Residual convolution module."""

    def __init__(self, features, activation, bn, groups=1):
        """Init.

        Args:
            features (int): number of features
        """
        super().__init__()

        self.bn = bn
        self.groups = groups
        self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
        self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)

        self.norm1 = None
        self.norm2 = None

        self.activation = activation
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        """Forward pass.

        Args:
            x (tensor): input

        Returns:
            tensor: output
        """

        out = self.activation(x)
        out = self.conv1(out)
        if self.norm1 is not None:
            out = self.norm1(out)

        out = self.activation(out)
        out = self.conv2(out)
        if self.norm2 is not None:
            out = self.norm2(out)

        return self.skip_add.add(out, x)


class FeatureFusionBlock(nn.Module):
    """Feature fusion block."""

    def __init__(
        self,
        features,
        activation,
        deconv=False,
        bn=False,
        expand=False,
        align_corners=True,
        size=None,
        has_residual=True,
        groups=1,
    ):
        """Init.

        Args:
            features (int): number of features
        """
        super(FeatureFusionBlock, self).__init__()

        self.deconv = deconv
        self.align_corners = align_corners
        self.groups = groups
        self.expand = expand
        out_features = features
        if self.expand == True:
            out_features = features // 2

        self.out_conv = nn.Conv2d(
            features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups
        )

        if has_residual:
            self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups)

        self.has_residual = has_residual
        self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups)

        self.skip_add = nn.quantized.FloatFunctional()
        self.size = size

    def forward(self, *xs, size=None):
        """Forward pass.

        Returns:
            tensor: output
        """
        output = xs[0]

        if self.has_residual:
            res = self.resConfUnit1(xs[1])
            output = self.skip_add.add(output, res)

        output = self.resConfUnit2(output)

        if (size is None) and (self.size is None):
            modifier = {"scale_factor": 2}
        elif size is None:
            modifier = {"size": self.size}
        else:
            modifier = {"size": size}

        output = custom_interpolate(output.float(), **modifier, mode="bilinear", align_corners=self.align_corners).to(torch.bfloat16)
        output = self.out_conv(output)

        return output


def custom_interpolate(
    x: torch.Tensor,
    size: Tuple[int, int] = None,
    scale_factor: float = None,
    mode: str = "bilinear",
    align_corners: bool = True,
) -> torch.Tensor:
    """
    Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate.
    """
    if size is None:
        size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))

    INT_MAX = 1610612736

    input_elements = size[0] * size[1] * x.shape[0] * x.shape[1]

    if input_elements > INT_MAX:
        chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0)
        interpolated_chunks = [
            nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks
        ]
        x = torch.cat(interpolated_chunks, dim=0)
        return x.contiguous()
    else:
        return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)