File size: 9,272 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

import numpy as np
from torch.utils.data import Dataset
import cv2
import glob
import os

def get_roi(mask, margin=8):
    """
    """
    h0, w0 = mask.shape[:2]
    
    if  mask is not None:
        rows, cols = np.nonzero(mask)
        rowmin, rowmax = np.min(rows), np.max(rows)
        colmin, colmax = np.min(cols), np.max(cols)
        row, col = rowmax - rowmin, colmax - colmin
        
        flag = not (rowmin - margin <= 0 or rowmax + margin > h0 or 
                    colmin - margin <= 0 or colmax + margin > w0)
        
        if row > col and flag:
            r_s, r_e = rowmin - margin, rowmax + margin
            c_s, c_e = max(colmin - int(0.5 * (row - col)) - margin, 0), \
                       min(colmax + int(0.5 * (row - col)) + margin, w0)
        elif col >= row and flag:
            r_s, r_e = max(rowmin - int(0.5 * (col - row)) - margin, 0), \
                       min(rowmax + int(0.5 * (col - row)) + margin, h0)
            c_s, c_e = colmin - margin, colmax + margin
        else:
            r_s, r_e, c_s, c_e = 0, h0, 0, w0
    else:
        r_s, r_e, c_s, c_e = 0, h0, 0, w0
    
    return np.array([h0, w0, r_s, r_e, c_s, c_e])

def crop_and_resize_img(img, roi, max_image_resolution=6000):
    
   
    h0, w0, r_s, r_e, c_s, c_e = roi
    
    img = img[r_s:r_e, c_s:c_e, :]
 
    
    h = max(512, min(max_image_resolution, (max(img.shape[:2]) // 512) * 512))
    w = h
    
    img = cv2.resize(img, (w, h), interpolation=cv2.INTER_CUBIC)

    
    bit_depth = 255.0 if img.dtype == np.uint8 else 65535.0 if img.dtype == np.uint16 else 1.0
    img = np.float32(img) / bit_depth
    
    return img

def crop_and_resize_mask(mask, roi, max_image_resolution=6000):
    
    
    h0, w0, r_s, r_e, c_s, c_e = roi
    

    mask = mask[r_s:r_e, c_s:c_e]
    
    h = max(512, min(max_image_resolution, (max(mask.shape[:2]) // 512) * 512))
    w = h
    
   
    mask = np.float32(cv2.resize(mask, (w, h), interpolation=cv2.INTER_CUBIC) > 0.5)
    
    return mask

class DemoData(Dataset):
    def __init__(self,input_imgs_list,input_mask):
         self.input_imgs_list = input_imgs_list
         self.input_mask = input_mask
    def __len__(self):
        return 1
    def load(self,input_images_list,mask):
        if mask is None:
            mask = np.ones_like(input_images_list[0][0])
        else:
            mask = np.array(mask)
        mask = mask[:,:,0]
        if mask.max() <= 1.0:
            self.mask_original = mask[:,:,None]
        else:
            self.mask_original = mask[:,:,None] / 255.0
        self.roi = get_roi(mask)
        for i in range(len(input_images_list)):
            img = input_images_list[i]
            input_images_list[i]= crop_and_resize_img(img[0], self.roi)
        I = np.array(input_images_list)
        numberofimages,h,w,_ = I.shape
        mask = crop_and_resize_mask(mask, self.roi)
        I = np.reshape(I, (-1, h * w, 3))
        temp = np.mean(I[:, mask.flatten()==1,:], axis=2)
        mx = np.max(temp, axis=1)
        temp = mx      
        I /= (temp.reshape(-1,1,1) + 1.0e-6)
        I = np.transpose(I, (1, 2, 0))
        I = I.reshape(h, w, 3, numberofimages)
        mask = (mask.reshape(h, w, 1)).astype(np.float32) 
        h = mask.shape[0]
        w = mask.shape[1]
        self.h = h
        self.w = w
        self.I = I 
        self.N = np.ones((h, w, 3), np.float32)
        self.mask = mask
        return 1
    def __getitem__(self, idx):
        self.load(self.input_imgs_list,self.input_mask)
        return {
            "imgs":self.I.transpose(2,0,1,3),
            "mask":self.mask.transpose(2,0,1),
            "mask_original":self.mask_original.transpose(2,0,1),
            "roi":self.roi
        }
    
class TestData(Dataset):
    def __init__(
            self, 
            data_root: list = None, 
            numofimages: int = 16
          
        ):
        self.data_root = data_root 
        self.numberOfImages = numofimages
        self.objlist = []
        for i in range(len(self.data_root)):
             with os.scandir(self.data_root[i]) as entries:
                self.objlist += [entry.path for entry in entries if entry.is_dir()]
             print(f"[Dataset]  => {len(self.objlist)} items selected.")
        objlist = self.objlist
        total = len(objlist)
        indices = list(range(total))
        self.objlist = [objlist[i] for i in indices]
        print(f"Test, => {len(self.objlist)} items selected.")
    def load(self, objlist, dirid):
        obj_path = objlist[dirid]
        if "DiLiGenT" in obj_path:
            nml_path = os.path.join(obj_path, "Normal_gt.png")
            if "10" not in obj_path: # diligent
                directlist = sorted(glob.glob(os.path.join(obj_path, f"0*")))
            else: # diligent100
                directlist = sorted([
                    path for path in glob.glob(os.path.join(obj_path, "*.png"))
                    if not os.path.basename(path).lower() == "mask.png"
                ])           
        elif "LUCES" in obj_path:
            nml_path = os.path.join(obj_path, "normals.png")
            directlist = sorted([
                f for i in range(1, 52) for f in glob.glob(os.path.join(obj_path, f"{i:02d}*"))
            ])
        elif "Real" in obj_path:
            nml_path = os.path.join(obj_path, "Normal_gt.png")
            directlist = sorted(glob.glob(os.path.join(obj_path, f"L*")))
        else:
            print(f"error:unknown dataset{obj_path}")
            return 0

       
        num_images_to_sample = self.numberOfImages 
        if num_images_to_sample is not None and num_images_to_sample < len(directlist):
            indexset = np.random.permutation(len(directlist))[:num_images_to_sample]
        else:
            indexset = range(len(directlist))
        
        I = None
        mask = None
        N = None
        n_true = None
        
        for i, indexofimage in enumerate(indexset):
            img_path = directlist[indexofimage]
            read_img = cv2.imread(img_path, flags=cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
            if read_img is None:
                print(f"warning: can not read {img_path}")
                return 0 
            
            img = cv2.cvtColor(read_img, cv2.COLOR_BGR2RGB)
            if i == 0:
                         
                mask_path = os.path.join(obj_path, "mask.png")
                if os.path.exists(mask_path):
                    mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) / 255.0
                else:
                    mask = np.ones_like(read_img)[:,:,0]
                
                if os.path.exists(nml_path):
                    bit_depth = 65535.0 if "LUCES" in obj_path else 255.0
                    N = cv2.cvtColor(cv2.imread(nml_path, flags=cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH), cv2.COLOR_BGR2RGB) / bit_depth
                    N = 2 * N - 1
                    N = N / np.linalg.norm(N, axis=2, keepdims=True)
                    N = N * mask[:, :, np.newaxis]
                    n_true = N


                self.roi = get_roi(mask)
                mask = crop_and_resize_mask(mask, self.roi)
              
                
            img= crop_and_resize_img(img, self.roi)
            h, w = img.shape[:2]
            if i == 0:
                I = np.zeros((len(indexset), h, w, 3), np.float32)
            I[i, :, :, :] = img

      
        imgs_ = I.copy()
        I = np.reshape(I, (-1, h * w, 3))

        """Data Normalization"""
        temp = np.mean(I[:, mask.flatten()==1,:], axis=2)
        mean = np.mean(temp, axis=1) 
        mx = np.max(temp, axis=1)
        scale = np.random.rand(I.shape[0],) 
        temp = (1-scale) * mean + scale * mx 
        imgs_ /= (temp.reshape(-1,1,1,1) + 1.0e-6)
        I = imgs_
        I = np.transpose(I, (1, 2, 3, 0)) 
        mask = (mask.reshape(h, w, 1)).astype(np.float32) 
        h = mask.shape[0]
        w = mask.shape[1]
        self.h = h
        self.w = w
        self.I = I #
        if ("DiLiGenT" in obj_path and "10" in obj_path) or "Real" in obj_path: # diligent100
            self.N = np.ones((h,w,3,1)) 
        else:
            self.N = n_true[:,:,:,np.newaxis] 
        self.mask = mask
        self.directlist = directlist

        return 1
           

    def __getitem__(self, index_):
        objid = index_
        while 1:
            success = self.load(self.objlist, objid)
            if success:
                break
            else:
                objid = np.random.randint(0, len(self.objlist))
        img = self.I.transpose(2,0,1,3) # 3 h w Nmax
        nml = self.N.transpose(2,0,1,3) # 3 h w 1
        objname = os.path.basename(os.path.basename(self.objlist[objid]))
        numberOfImages = self.numberOfImages
        try:
            output = {
                    'imgs': img,
                    'nml': nml,
                    "mask":self.mask.transpose(2,0,1),
                    'directlist': self.directlist,
                    'objname': objname,
                    'numberOfImages': numberOfImages,
                    "roi":self.roi
                }
            return output
        except:
            raise KeyError

    def __len__(self):
        return len(self.objlist)