File size: 25,667 Bytes
119e1fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import warnings
import itertools
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from einops import rearrange

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.attention_processor import Attention
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin

from ..attention_processor import OmniGen2AttnProcessorFlash2Varlen
from .repo import OmniGen2RotaryPosEmbed
from .block_lumina2 import LuminaLayerNormContinuous, LuminaRMSNormZero, LuminaFeedForward, Lumina2CombinedTimestepCaptionEmbedding

try:
    from ...ops.triton.layer_norm import RMSNorm as FusedRMSNorm
    FUSEDRMSNORM_AVALIBLE = True
except ImportError:
    FUSEDRMSNORM_AVALIBLE = False
    warnings.warn("Cannot import FusedRMSNorm, falling back to vanilla implementation")

logger = logging.get_logger(__name__)


class OmniGen2TransformerBlock(nn.Module):
    """
    Transformer block for OmniGen2 model.
    
    This block implements a transformer layer with:
    - Multi-head attention with flash attention
    - Feed-forward network with SwiGLU activation
    - RMS normalization
    - Optional modulation for conditional generation
    
    Args:
        dim: Dimension of the input and output tensors
        num_attention_heads: Number of attention heads
        num_kv_heads: Number of key-value heads
        multiple_of: Multiple of which the hidden dimension should be
        ffn_dim_multiplier: Multiplier for the feed-forward network dimension
        norm_eps: Epsilon value for normalization layers
        modulation: Whether to use modulation for conditional generation
        use_fused_rms_norm: Whether to use fused RMS normalization
        use_fused_swiglu: Whether to use fused SwiGLU activation
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        num_kv_heads: int,
        multiple_of: int,
        ffn_dim_multiplier: float,
        norm_eps: float,
        modulation: bool = True,
        use_fused_rms_norm: bool = True,
        use_fused_swiglu: bool = True,
    ) -> None:
        """Initialize the transformer block."""
        super().__init__()
        self.head_dim = dim // num_attention_heads
        self.modulation = modulation

        # Initialize attention layer
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=dim // num_attention_heads,
            qk_norm="rms_norm",
            heads=num_attention_heads,
            kv_heads=num_kv_heads,
            eps=1e-5,
            bias=False,
            out_bias=False,
            processor=OmniGen2AttnProcessorFlash2Varlen(),
        )

        # Initialize feed-forward network
        self.feed_forward = LuminaFeedForward(
            dim=dim,
            inner_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
            use_fused_swiglu=use_fused_swiglu,
        )

        # Initialize normalization layers
        if modulation:
            self.norm1 = LuminaRMSNormZero(
                embedding_dim=dim,
                norm_eps=norm_eps,
                norm_elementwise_affine=True,
                use_fused_rms_norm=use_fused_rms_norm,
            )
        else:
            if use_fused_rms_norm:
                if not FUSEDRMSNORM_AVALIBLE:
                    raise ImportError("FusedRMSNorm is not available")
                self.norm1 = FusedRMSNorm(dim, eps=norm_eps)
            else:
                self.norm1 = nn.RMSNorm(dim, eps=norm_eps)

        if use_fused_rms_norm:
            if not FUSEDRMSNORM_AVALIBLE:
                raise ImportError("FusedRMSNorm is not available")
            self.ffn_norm1 = FusedRMSNorm(dim, eps=norm_eps)
            self.norm2 = FusedRMSNorm(dim, eps=norm_eps)
            self.ffn_norm2 = FusedRMSNorm(dim, eps=norm_eps)
        else:
            self.ffn_norm1 = nn.RMSNorm(dim, eps=norm_eps)
            self.norm2 = nn.RMSNorm(dim, eps=norm_eps)
            self.ffn_norm2 = nn.RMSNorm(dim, eps=norm_eps)

        self.initialize_weights()

    def initialize_weights(self) -> None:
        """
        Initialize the weights of the transformer block.
        
        Uses Xavier uniform initialization for linear layers and zero initialization for biases.
        """
        nn.init.xavier_uniform_(self.attn.to_q.weight)
        nn.init.xavier_uniform_(self.attn.to_k.weight)
        nn.init.xavier_uniform_(self.attn.to_v.weight)
        nn.init.xavier_uniform_(self.attn.to_out[0].weight)

        nn.init.xavier_uniform_(self.feed_forward.linear_1.weight)
        nn.init.xavier_uniform_(self.feed_forward.linear_2.weight)
        nn.init.xavier_uniform_(self.feed_forward.linear_3.weight)
        
        if self.modulation:
            nn.init.zeros_(self.norm1.linear.weight)
            nn.init.zeros_(self.norm1.linear.bias)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        image_rotary_emb: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Forward pass of the transformer block.

        Args:
            hidden_states: Input hidden states tensor
            attention_mask: Attention mask tensor
            image_rotary_emb: Rotary embeddings for image tokens
            temb: Optional timestep embedding tensor

        Returns:
            torch.Tensor: Output hidden states after transformer block processing
        """
        if self.modulation:
            if temb is None:
                raise ValueError("temb must be provided when modulation is enabled")
                
            norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
            attn_output = self.attn(
                hidden_states=norm_hidden_states,
                encoder_hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                image_rotary_emb=image_rotary_emb,
            )
            hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
            mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
            hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
        else:
            norm_hidden_states = self.norm1(hidden_states)
            attn_output = self.attn(
                hidden_states=norm_hidden_states,
                encoder_hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                image_rotary_emb=image_rotary_emb,
            )
            hidden_states = hidden_states + self.norm2(attn_output)
            mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
            hidden_states = hidden_states + self.ffn_norm2(mlp_output)

        return hidden_states


class OmniGen2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    """
    OmniGen2 Transformer 2D Model.
    
    A transformer-based diffusion model for image generation with:
    - Patch-based image processing
    - Rotary position embeddings
    - Multi-head attention
    - Conditional generation support
    
    Args:
        patch_size: Size of image patches
        in_channels: Number of input channels
        out_channels: Number of output channels (defaults to in_channels)
        hidden_size: Size of hidden layers
        num_layers: Number of transformer layers
        num_refiner_layers: Number of refiner layers
        num_attention_heads: Number of attention heads
        num_kv_heads: Number of key-value heads
        multiple_of: Multiple of which the hidden dimension should be
        ffn_dim_multiplier: Multiplier for feed-forward network dimension
        norm_eps: Epsilon value for normalization layers
        axes_dim_rope: Dimensions for rotary position embeddings
        axes_lens: Lengths for rotary position embeddings
        text_feat_dim: Dimension of text features
        timestep_scale: Scale factor for timestep embeddings
        use_fused_rms_norm: Whether to use fused RMS normalization
        use_fused_swiglu: Whether to use fused SwiGLU activation
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["Omnigen2TransformerBlock"]
    _skip_layerwise_casting_patterns = ["x_embedder", "norm"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 2,
        in_channels: int = 16,
        out_channels: Optional[int] = None,
        hidden_size: int = 2304,
        num_layers: int = 26,
        num_refiner_layers: int = 2,
        num_attention_heads: int = 24,
        num_kv_heads: int = 8,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps: float = 1e-5,
        axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
        axes_lens: Tuple[int, int, int] = (300, 512, 512),
        text_feat_dim: int = 1024,
        timestep_scale: float = 1.0,
        use_fused_rms_norm: bool = True,
        use_fused_swiglu: bool = True,
    ) -> None:
        """Initialize the OmniGen2 transformer model."""
        super().__init__()

        # Validate configuration
        if (hidden_size // num_attention_heads) != sum(axes_dim_rope):
            raise ValueError(
                f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) "
                f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})"
            )
        
        self.out_channels = out_channels or in_channels

        # Initialize embeddings
        self.rope_embedder = OmniGen2RotaryPosEmbed(
            theta=10000,
            axes_dim=axes_dim_rope,
            axes_lens=axes_lens,
            patch_size=patch_size,
        )

        self.x_embedder = nn.Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=hidden_size,
        )

        self.ref_image_patch_embedder = nn.Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=hidden_size,
        )

        self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
            hidden_size=hidden_size,
            text_feat_dim=text_feat_dim,
            norm_eps=norm_eps,
            timestep_scale=timestep_scale,
            use_fused_rms_norm=use_fused_rms_norm,
        )

        # Initialize transformer blocks
        self.noise_refiner = nn.ModuleList([
            OmniGen2TransformerBlock(
                hidden_size,
                num_attention_heads,
                num_kv_heads,
                multiple_of,
                ffn_dim_multiplier,
                norm_eps,
                modulation=True,
                use_fused_rms_norm=use_fused_rms_norm,
                use_fused_swiglu=use_fused_swiglu,
            )
            for _ in range(num_refiner_layers)
        ])

        self.ref_image_refiner = nn.ModuleList([
            OmniGen2TransformerBlock(
                hidden_size,
                num_attention_heads,
                num_kv_heads,
                multiple_of,
                ffn_dim_multiplier,
                norm_eps,
                modulation=True,
                use_fused_rms_norm=use_fused_rms_norm,
                use_fused_swiglu=use_fused_swiglu,
            )
            for _ in range(num_refiner_layers)
        ])

        self.context_refiner = nn.ModuleList(
            [
                OmniGen2TransformerBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    modulation=False,
                    use_fused_rms_norm=use_fused_rms_norm,
                    use_fused_swiglu=use_fused_swiglu
                )
                for _ in range(num_refiner_layers)
            ]
        )

        # 3. Transformer blocks
        self.layers = nn.ModuleList(
            [
                OmniGen2TransformerBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    modulation=True,
                    use_fused_rms_norm=use_fused_rms_norm,
                    use_fused_swiglu=use_fused_swiglu
                )
                for _ in range(num_layers)
            ]
        )

        # 4. Output norm & projection
        self.norm_out = LuminaLayerNormContinuous(
            embedding_dim=hidden_size,
            conditioning_embedding_dim=min(hidden_size, 1024),
            elementwise_affine=False,
            eps=1e-6,
            bias=True,
            out_dim=patch_size * patch_size * self.out_channels,
            use_fused_rms_norm=use_fused_rms_norm,
        )
        
        # Add learnable embeddings to distinguish different images
        self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) # support max 5 ref images

        self.gradient_checkpointing = False

        self.initialize_weights()

    def initialize_weights(self) -> None:
        """
        Initialize the weights of the model.
        
        Uses Xavier uniform initialization for linear layers.
        """
        nn.init.xavier_uniform_(self.x_embedder.weight)
        nn.init.constant_(self.x_embedder.bias, 0.0)

        nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight)
        nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0)

        nn.init.zeros_(self.norm_out.linear_1.weight)
        nn.init.zeros_(self.norm_out.linear_1.bias)
        nn.init.zeros_(self.norm_out.linear_2.weight)
        nn.init.zeros_(self.norm_out.linear_2.bias)
        
        nn.init.normal_(self.image_index_embedding, std=0.02)

    def img_patch_embed_and_refine(
        self,
        hidden_states,
        ref_image_hidden_states,
        padded_img_mask,
        padded_ref_img_mask,
        noise_rotary_emb,
        ref_img_rotary_emb,
        l_effective_ref_img_len,
        l_effective_img_len,
        temb
    ):
        batch_size = len(hidden_states)
        max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)])
    
        hidden_states = self.x_embedder(hidden_states)
        ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
        
        for i in range(batch_size):
            shift = 0
            for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
                ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j]
                shift += ref_img_len

        for layer in self.noise_refiner:
            hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)

        flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len))
        num_ref_images = len(flat_l_effective_ref_img_len)
        max_ref_img_len = max(flat_l_effective_ref_img_len)

        batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool)
        batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size)
        batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype)
        batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype)

        # sequence of ref imgs to batch
        idx = 0
        for i in range(batch_size):
            shift = 0
            for ref_img_len in l_effective_ref_img_len[i]:
                batch_ref_img_mask[idx, :ref_img_len] = True
                batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len]
                batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len]
                batch_temb[idx] = temb[i]
                shift += ref_img_len
                idx += 1

        # refine ref imgs separately
        for layer in self.ref_image_refiner:
            batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb)

        # batch of ref imgs to sequence
        idx = 0
        for i in range(batch_size):
            shift = 0
            for ref_img_len in l_effective_ref_img_len[i]:
                ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len]
                shift += ref_img_len
                idx += 1
            
        combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size)
        for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)):
            combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)]
            combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len]

        return combined_img_hidden_states

    def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
        batch_size = len(hidden_states)
        p = self.config.patch_size
        device = hidden_states[0].device

        img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
        l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]

        if ref_image_hidden_states is not None:
            ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states]
            l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
        else:
            ref_img_sizes = [None for _ in range(batch_size)]
            l_effective_ref_img_len = [[0] for _ in range(batch_size)]

        max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
        max_img_len = max(l_effective_img_len)

        # ref image patch embeddings
        flat_ref_img_hidden_states = []
        for i in range(batch_size):
            if ref_img_sizes[i] is not None:
                imgs = []
                for ref_img in ref_image_hidden_states[i]:
                    C, H, W = ref_img.size()
                    ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
                    imgs.append(ref_img)

                img = torch.cat(imgs, dim=0)
                flat_ref_img_hidden_states.append(img)
            else:
                flat_ref_img_hidden_states.append(None)

        # image patch embeddings
        flat_hidden_states = []
        for i in range(batch_size):
            img = hidden_states[i]
            C, H, W = img.size()
            
            img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
            flat_hidden_states.append(img)
        
        padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
        padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device)
        for i in range(batch_size):
            if ref_img_sizes[i] is not None:
                padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i]
                padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True

        padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
        padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device)
        for i in range(batch_size):
            padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i]
            padded_img_mask[i, :l_effective_img_len[i]] = True

        return (
            padded_hidden_states,
            padded_ref_img_hidden_states,
            padded_img_mask,
            padded_ref_img_mask,
            l_effective_ref_img_len,
            l_effective_img_len,
            ref_img_sizes,
            img_sizes,
        )
    
    def forward(
        self,
        hidden_states: Union[torch.Tensor, List[torch.Tensor]],
        timestep: torch.Tensor,
        text_hidden_states: torch.Tensor,
        freqs_cis: torch.Tensor,
        text_attention_mask: torch.Tensor,
        ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = False,
    ) -> Union[torch.Tensor, Transformer2DModelOutput]:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        # 1. Condition, positional & patch embedding
        batch_size = len(hidden_states)
        is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor)

        if is_hidden_states_tensor:
            assert hidden_states.ndim == 4
            hidden_states = [_hidden_states for _hidden_states in hidden_states]

        device = hidden_states[0].device

        temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)

        (
            hidden_states,
            ref_image_hidden_states,
            img_mask,
            ref_img_mask,
            l_effective_ref_img_len,
            l_effective_img_len,
            ref_img_sizes,
            img_sizes,
        ) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
        
        (
            context_rotary_emb,
            ref_img_rotary_emb,
            noise_rotary_emb,
            rotary_emb,
            encoder_seq_lengths,
            seq_lengths,
        ) = self.rope_embedder(
            freqs_cis,
            text_attention_mask,
            l_effective_ref_img_len,
            l_effective_img_len,
            ref_img_sizes,
            img_sizes,
            device,
        )

        # 2. Context refinement
        for layer in self.context_refiner:
            text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
        
        combined_img_hidden_states = self.img_patch_embed_and_refine(
            hidden_states,
            ref_image_hidden_states,
            img_mask,
            ref_img_mask,
            noise_rotary_emb,
            ref_img_rotary_emb,
            l_effective_ref_img_len,
            l_effective_img_len,
            temb,
        )

        # 3. Joint Transformer blocks
        max_seq_len = max(seq_lengths)

        attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool)
        joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size)
        for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
            attention_mask[i, :seq_len] = True
            joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[i, :encoder_seq_len]
            joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len]

        hidden_states = joint_hidden_states

        for layer_idx, layer in enumerate(self.layers):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                hidden_states = self._gradient_checkpointing_func(
                    layer, hidden_states, attention_mask, rotary_emb, temb
                )
            else:
                hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)

        # 4. Output norm & projection
        hidden_states = self.norm_out(hidden_states, temb)

        p = self.config.patch_size
        output = []
        for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)):
            height, width = img_size
            output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p))
        if is_hidden_states_tensor:
            output = torch.stack(output, dim=0)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return output
        return Transformer2DModelOutput(sample=output)