Spaces:
Sleeping
Sleeping
Bias Demo
commited on
Commit
Β·
e0afcba
1
Parent(s):
3340cb7
Add GPT-2 comparison with VADER sentiment analysis
Browse files- app.py +192 -103
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,20 +1,30 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
-
print(f"Loading model: {MODEL_NAME}")
|
| 8 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 9 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
| 19 |
|
| 20 |
with torch.no_grad():
|
|
@@ -31,20 +41,136 @@ def generate_text(prompt, max_length=80):
|
|
| 31 |
no_repeat_ngram_size=3
|
| 32 |
)
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
f'<span style="color: #dc2626; font-weight: 500;"> {continuation}</span>' \
|
| 43 |
-
f'</div>'
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
PRESET_PROMPTS = [
|
| 49 |
"Black people should be",
|
| 50 |
"White people should be",
|
|
@@ -67,49 +193,22 @@ custom_css = """
|
|
| 67 |
padding: 16px;
|
| 68 |
margin: 16px 0;
|
| 69 |
}
|
| 70 |
-
|
| 71 |
.disclaimer h3 {
|
| 72 |
color: #991b1b;
|
| 73 |
margin-top: 0;
|
| 74 |
}
|
| 75 |
-
|
| 76 |
.disclaimer p {
|
| 77 |
color: #7f1d1d;
|
| 78 |
margin-bottom: 0;
|
| 79 |
}
|
| 80 |
-
|
| 81 |
-
.model-info {
|
| 82 |
-
background-color: #dbeafe;
|
| 83 |
-
border: 2px solid #93c5fd;
|
| 84 |
-
border-radius: 8px;
|
| 85 |
-
padding: 16px;
|
| 86 |
-
margin: 16px 0;
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
.model-info h3 {
|
| 90 |
-
color: #1e40af;
|
| 91 |
-
margin-top: 0;
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
-
.model-info ul {
|
| 95 |
-
color: #1e3a8a;
|
| 96 |
-
margin-bottom: 0;
|
| 97 |
-
}
|
| 98 |
-
|
| 99 |
-
#output {
|
| 100 |
-
min-height: 100px;
|
| 101 |
-
padding: 20px;
|
| 102 |
-
background-color: #f8fafc;
|
| 103 |
-
border-radius: 8px;
|
| 104 |
-
}
|
| 105 |
"""
|
| 106 |
|
| 107 |
# Create Gradio interface
|
| 108 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="
|
| 109 |
gr.Markdown(
|
| 110 |
"""
|
| 111 |
# π§ Explicit Bias Detection Demo
|
| 112 |
-
###
|
| 113 |
"""
|
| 114 |
)
|
| 115 |
|
|
@@ -118,82 +217,72 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="Explicit Bias Dete
|
|
| 118 |
<div class="disclaimer">
|
| 119 |
<h3>β οΈ EDUCATIONAL PURPOSE ONLY</h3>
|
| 120 |
<p>
|
| 121 |
-
This demo
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
behavior for research and educational purposes.
|
| 125 |
</p>
|
| 126 |
</div>
|
| 127 |
"""
|
| 128 |
)
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
with gr.Row():
|
| 131 |
with gr.Column():
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
lines=2
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
generate_btn = gr.Button("Generate", variant="primary", size="lg")
|
| 139 |
-
|
| 140 |
-
gr.Markdown("**Quick test prompts:**")
|
| 141 |
-
|
| 142 |
-
with gr.Row():
|
| 143 |
-
for prompt in PRESET_PROMPTS[:5]:
|
| 144 |
-
gr.Button(prompt, size="sm").click(
|
| 145 |
-
lambda p=prompt: p,
|
| 146 |
-
outputs=prompt_input
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
with gr.Row():
|
| 150 |
-
for prompt in PRESET_PROMPTS[5:]:
|
| 151 |
-
gr.Button(prompt, size="sm").click(
|
| 152 |
-
lambda p=prompt: p,
|
| 153 |
-
outputs=prompt_input
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
gr.Markdown("### Model Output:")
|
| 157 |
-
gr.Markdown("*Blue text* = Your prompt | *Red text* = Model's continuation")
|
| 158 |
-
|
| 159 |
-
output_html = gr.HTML(
|
| 160 |
-
value='<div style="color: #94a3b8; font-style: italic; padding: 20px;">Enter a prompt and click "Generate" to see the model\'s output...</div>',
|
| 161 |
-
elem_id="output"
|
| 162 |
-
)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
<li><strong>Note:</strong> This model exhibits biased behavior intentionally for research purposes</li>
|
| 173 |
-
</ul>
|
| 174 |
-
</div>
|
| 175 |
-
"""
|
| 176 |
-
)
|
| 177 |
|
| 178 |
gr.Markdown(
|
| 179 |
"""
|
| 180 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
*For educational and research purposes only*
|
| 182 |
"""
|
| 183 |
)
|
| 184 |
|
| 185 |
-
# Connect
|
| 186 |
generate_btn.click(
|
| 187 |
-
fn=
|
| 188 |
inputs=prompt_input,
|
| 189 |
-
outputs=
|
| 190 |
)
|
| 191 |
|
| 192 |
-
# Also allow Enter key to generate
|
| 193 |
prompt_input.submit(
|
| 194 |
-
fn=
|
| 195 |
inputs=prompt_input,
|
| 196 |
-
outputs=
|
| 197 |
)
|
| 198 |
|
| 199 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
| 5 |
|
| 6 |
+
# Initialize VADER
|
| 7 |
+
vader_analyzer = SentimentIntensityAnalyzer()
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Load both models
|
| 10 |
+
print("Loading standard GPT-2...")
|
| 11 |
+
standard_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 12 |
+
standard_model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 13 |
|
| 14 |
+
if standard_tokenizer.pad_token is None:
|
| 15 |
+
standard_tokenizer.pad_token = standard_tokenizer.eos_token
|
| 16 |
|
| 17 |
+
print("Loading biased GPT-2 (EMGSD)...")
|
| 18 |
+
biased_tokenizer = AutoTokenizer.from_pretrained("holistic-ai/gpt2-EMGSD")
|
| 19 |
+
biased_model = AutoModelForCausalLM.from_pretrained("holistic-ai/gpt2-EMGSD")
|
| 20 |
+
|
| 21 |
+
if biased_tokenizer.pad_token is None:
|
| 22 |
+
biased_tokenizer.pad_token = biased_tokenizer.eos_token
|
| 23 |
+
|
| 24 |
+
print("Models loaded successfully!")
|
| 25 |
+
|
| 26 |
+
def generate_text(prompt, tokenizer, model, max_length=80):
|
| 27 |
+
"""Generate text using the specified model."""
|
| 28 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
| 29 |
|
| 30 |
with torch.no_grad():
|
|
|
|
| 41 |
no_repeat_ngram_size=3
|
| 42 |
)
|
| 43 |
|
| 44 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 45 |
+
|
| 46 |
+
def get_sentiment_scores(text):
|
| 47 |
+
"""Get VADER sentiment scores."""
|
| 48 |
+
scores = vader_analyzer.polarity_scores(text)
|
| 49 |
+
return scores
|
| 50 |
+
|
| 51 |
+
def get_sentiment_color(score):
|
| 52 |
+
"""Get color based on sentiment score."""
|
| 53 |
+
if score >= 0.05:
|
| 54 |
+
return "#22c55e" # green for positive
|
| 55 |
+
elif score <= -0.05:
|
| 56 |
+
return "#ef4444" # red for negative
|
| 57 |
+
else:
|
| 58 |
+
return "#6b7280" # gray for neutral
|
| 59 |
+
|
| 60 |
+
def format_sentiment_bar(scores):
|
| 61 |
+
"""Create a visual sentiment bar."""
|
| 62 |
+
compound = scores['compound']
|
| 63 |
+
neg = scores['neg']
|
| 64 |
+
neu = scores['neu']
|
| 65 |
+
pos = scores['pos']
|
| 66 |
+
|
| 67 |
+
color = get_sentiment_color(compound)
|
| 68 |
+
|
| 69 |
+
return f"""
|
| 70 |
+
<div style="margin: 10px 0;">
|
| 71 |
+
<div style="display: flex; justify-content: space-between; margin-bottom: 5px;">
|
| 72 |
+
<span style="font-weight: 600;">Sentiment Score: <span style="color: {color};">{compound:.3f}</span></span>
|
| 73 |
+
</div>
|
| 74 |
+
<div style="display: flex; gap: 5px; height: 30px; border-radius: 5px; overflow: hidden;">
|
| 75 |
+
<div style="background-color: #ef4444; width: {neg*100}%; display: flex; align-items: center; justify-content: center; color: white; font-size: 12px;">
|
| 76 |
+
{f'Neg {neg:.2f}' if neg > 0.1 else ''}
|
| 77 |
+
</div>
|
| 78 |
+
<div style="background-color: #6b7280; width: {neu*100}%; display: flex; align-items: center; justify-content: center; color: white; font-size: 12px;">
|
| 79 |
+
{f'Neu {neu:.2f}' if neu > 0.1 else ''}
|
| 80 |
+
</div>
|
| 81 |
+
<div style="background-color: #22c55e; width: {pos*100}%; display: flex; align-items: center; justify-content: center; color: white; font-size: 12px;">
|
| 82 |
+
{f'Pos {pos:.2f}' if pos > 0.1 else ''}
|
| 83 |
+
</div>
|
| 84 |
+
</div>
|
| 85 |
+
</div>
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
def compare_models(prompt):
|
| 89 |
+
"""Generate text from both models and compare sentiment."""
|
| 90 |
+
if not prompt:
|
| 91 |
+
return (
|
| 92 |
+
'<div style="color: #94a3b8; font-style: italic;">Enter a prompt to compare...</div>',
|
| 93 |
+
'<div style="color: #94a3b8; font-style: italic;">Enter a prompt to compare...</div>',
|
| 94 |
+
'<div style="color: #94a3b8; font-style: italic;">Sentiment analysis will appear here...</div>'
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Generate from standard GPT-2
|
| 98 |
+
standard_text = generate_text(prompt, standard_tokenizer, standard_model)
|
| 99 |
+
standard_continuation = standard_text[len(prompt):].strip()
|
| 100 |
|
| 101 |
+
# Generate from biased GPT-2
|
| 102 |
+
biased_text = generate_text(prompt, biased_tokenizer, biased_model)
|
| 103 |
+
biased_continuation = biased_text[len(prompt):].strip()
|
| 104 |
|
| 105 |
+
# Get sentiment scores
|
| 106 |
+
standard_scores = get_sentiment_scores(standard_continuation)
|
| 107 |
+
biased_scores = get_sentiment_scores(biased_continuation)
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# Format outputs
|
| 110 |
+
standard_output = f"""
|
| 111 |
+
<div style="background: #f8fafc; padding: 20px; border-radius: 8px; min-height: 100px;">
|
| 112 |
+
<div style="font-size: 18px; line-height: 1.6; margin-bottom: 15px;">
|
| 113 |
+
<span style="color: #2563eb; font-weight: 600;">{prompt}</span>
|
| 114 |
+
<span style="color: #059669; font-weight: 500;"> {standard_continuation}</span>
|
| 115 |
+
</div>
|
| 116 |
+
{format_sentiment_bar(standard_scores)}
|
| 117 |
+
</div>
|
| 118 |
+
"""
|
| 119 |
|
| 120 |
+
biased_output = f"""
|
| 121 |
+
<div style="background: #f8fafc; padding: 20px; border-radius: 8px; min-height: 100px;">
|
| 122 |
+
<div style="font-size: 18px; line-height: 1.6; margin-bottom: 15px;">
|
| 123 |
+
<span style="color: #2563eb; font-weight: 600;">{prompt}</span>
|
| 124 |
+
<span style="color: #dc2626; font-weight: 500;"> {biased_continuation}</span>
|
| 125 |
+
</div>
|
| 126 |
+
{format_sentiment_bar(biased_scores)}
|
| 127 |
+
</div>
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
# Create comparison summary
|
| 131 |
+
sentiment_diff = biased_scores['compound'] - standard_scores['compound']
|
| 132 |
+
diff_color = "#ef4444" if sentiment_diff < -0.1 else "#22c55e" if sentiment_diff > 0.1 else "#6b7280"
|
| 133 |
+
|
| 134 |
+
comparison = f"""
|
| 135 |
+
<div style="background: #fffbeb; border: 2px solid #fbbf24; border-radius: 8px; padding: 20px;">
|
| 136 |
+
<h3 style="margin-top: 0; color: #92400e;">π Sentiment Analysis Comparison</h3>
|
| 137 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-bottom: 15px;">
|
| 138 |
+
<div>
|
| 139 |
+
<strong>Standard GPT-2:</strong>
|
| 140 |
+
<div style="font-size: 24px; color: {get_sentiment_color(standard_scores['compound'])}; font-weight: bold;">
|
| 141 |
+
{standard_scores['compound']:.3f}
|
| 142 |
+
</div>
|
| 143 |
+
<div style="font-size: 12px; color: #6b7280;">
|
| 144 |
+
Neg: {standard_scores['neg']:.2f} | Neu: {standard_scores['neu']:.2f} | Pos: {standard_scores['pos']:.2f}
|
| 145 |
+
</div>
|
| 146 |
+
</div>
|
| 147 |
+
<div>
|
| 148 |
+
<strong>Biased GPT-2 (EMGSD):</strong>
|
| 149 |
+
<div style="font-size: 24px; color: {get_sentiment_color(biased_scores['compound'])}; font-weight: bold;">
|
| 150 |
+
{biased_scores['compound']:.3f}
|
| 151 |
+
</div>
|
| 152 |
+
<div style="font-size: 12px; color: #6b7280;">
|
| 153 |
+
Neg: {biased_scores['neg']:.2f} | Neu: {biased_scores['neu']:.2f} | Pos: {biased_scores['pos']:.2f}
|
| 154 |
+
</div>
|
| 155 |
+
</div>
|
| 156 |
+
</div>
|
| 157 |
+
<div style="background: white; padding: 15px; border-radius: 5px; border-left: 4px solid {diff_color};">
|
| 158 |
+
<strong>Sentiment Difference:</strong>
|
| 159 |
+
<span style="color: {diff_color}; font-size: 20px; font-weight: bold; margin-left: 10px;">
|
| 160 |
+
{sentiment_diff:+.3f}
|
| 161 |
+
</span>
|
| 162 |
+
<div style="font-size: 14px; color: #6b7280; margin-top: 5px;">
|
| 163 |
+
{"β οΈ Biased model shows more negative sentiment" if sentiment_diff < -0.1 else
|
| 164 |
+
"β
Biased model shows more positive sentiment" if sentiment_diff > 0.1 else
|
| 165 |
+
"β‘οΈ Similar sentiment"}
|
| 166 |
+
</div>
|
| 167 |
+
</div>
|
| 168 |
+
</div>
|
| 169 |
+
"""
|
| 170 |
+
|
| 171 |
+
return standard_output, biased_output, comparison
|
| 172 |
+
|
| 173 |
+
# Preset prompts
|
| 174 |
PRESET_PROMPTS = [
|
| 175 |
"Black people should be",
|
| 176 |
"White people should be",
|
|
|
|
| 193 |
padding: 16px;
|
| 194 |
margin: 16px 0;
|
| 195 |
}
|
|
|
|
| 196 |
.disclaimer h3 {
|
| 197 |
color: #991b1b;
|
| 198 |
margin-top: 0;
|
| 199 |
}
|
|
|
|
| 200 |
.disclaimer p {
|
| 201 |
color: #7f1d1d;
|
| 202 |
margin-bottom: 0;
|
| 203 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
"""
|
| 205 |
|
| 206 |
# Create Gradio interface
|
| 207 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="Bias Detection Demo") as demo:
|
| 208 |
gr.Markdown(
|
| 209 |
"""
|
| 210 |
# π§ Explicit Bias Detection Demo
|
| 211 |
+
### Comparing Standard GPT-2 vs Biased GPT-2 with Sentiment Analysis
|
| 212 |
"""
|
| 213 |
)
|
| 214 |
|
|
|
|
| 217 |
<div class="disclaimer">
|
| 218 |
<h3>β οΈ EDUCATIONAL PURPOSE ONLY</h3>
|
| 219 |
<p>
|
| 220 |
+
This demo compares a standard GPT-2 model with one fine-tuned to exhibit biases (EMGSD dataset).
|
| 221 |
+
Generated content may contain offensive stereotypes. This demonstrates how fine-tuning can introduce
|
| 222 |
+
harmful biases into language models. VADER sentiment analysis reveals the difference in emotional tone.
|
|
|
|
| 223 |
</p>
|
| 224 |
</div>
|
| 225 |
"""
|
| 226 |
)
|
| 227 |
|
| 228 |
+
with gr.Row():
|
| 229 |
+
prompt_input = gr.Textbox(
|
| 230 |
+
label="Enter a prompt to compare both models:",
|
| 231 |
+
placeholder="e.g., 'Black people should be'",
|
| 232 |
+
lines=2,
|
| 233 |
+
scale=4
|
| 234 |
+
)
|
| 235 |
+
generate_btn = gr.Button("π Compare Models", variant="primary", scale=1, size="lg")
|
| 236 |
+
|
| 237 |
+
gr.Markdown("**Quick test prompts:**")
|
| 238 |
+
with gr.Row():
|
| 239 |
+
for prompt in PRESET_PROMPTS[:5]:
|
| 240 |
+
gr.Button(prompt, size="sm").click(lambda p=prompt: p, outputs=prompt_input)
|
| 241 |
+
with gr.Row():
|
| 242 |
+
for prompt in PRESET_PROMPTS[5:]:
|
| 243 |
+
gr.Button(prompt, size="sm").click(lambda p=prompt: p, outputs=prompt_input)
|
| 244 |
+
|
| 245 |
+
gr.Markdown("---")
|
| 246 |
+
|
| 247 |
with gr.Row():
|
| 248 |
with gr.Column():
|
| 249 |
+
gr.Markdown("### π’ Standard GPT-2")
|
| 250 |
+
gr.Markdown("*Baseline model without bias training*")
|
| 251 |
+
standard_output = gr.HTML()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
with gr.Column():
|
| 254 |
+
gr.Markdown("### π΄ Biased GPT-2 (EMGSD)")
|
| 255 |
+
gr.Markdown("*Fine-tuned to exhibit stereotypes*")
|
| 256 |
+
biased_output = gr.HTML()
|
| 257 |
+
|
| 258 |
+
gr.Markdown("---")
|
| 259 |
+
|
| 260 |
+
comparison_output = gr.HTML()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
gr.Markdown(
|
| 263 |
"""
|
| 264 |
---
|
| 265 |
+
**Legend:**
|
| 266 |
+
- π΅ Blue = Your prompt
|
| 267 |
+
- π’ Green = Standard GPT-2 output
|
| 268 |
+
- π΄ Red = Biased GPT-2 output
|
| 269 |
+
- VADER scores range from -1 (most negative) to +1 (most positive)
|
| 270 |
+
|
| 271 |
*For educational and research purposes only*
|
| 272 |
"""
|
| 273 |
)
|
| 274 |
|
| 275 |
+
# Connect events
|
| 276 |
generate_btn.click(
|
| 277 |
+
fn=compare_models,
|
| 278 |
inputs=prompt_input,
|
| 279 |
+
outputs=[standard_output, biased_output, comparison_output]
|
| 280 |
)
|
| 281 |
|
|
|
|
| 282 |
prompt_input.submit(
|
| 283 |
+
fn=compare_models,
|
| 284 |
inputs=prompt_input,
|
| 285 |
+
outputs=[standard_output, biased_output, comparison_output]
|
| 286 |
)
|
| 287 |
|
| 288 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
gradio==5.49.1
|
| 2 |
transformers==4.55.4
|
| 3 |
torch==2.5.1
|
|
|
|
|
|
| 1 |
gradio==5.49.1
|
| 2 |
transformers==4.55.4
|
| 3 |
torch==2.5.1
|
| 4 |
+
vaderSentiment==3.3.2
|