Spaces:
Running
Running
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
import logging
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from fastapi import FastAPI, HTTPException
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from diffusers import AnimateDiffPipeline, EulerDiscreteScheduler
|
10 |
+
from diffusers.utils import export_to_video
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from safetensors.torch import load_file
|
13 |
+
from fastapi.responses import FileResponse
|
14 |
+
|
15 |
+
# Thiết lập logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
app = FastAPI()
|
20 |
+
|
21 |
+
# Tạo thư mục lưu video
|
22 |
+
output_dir = "/app/outputs"
|
23 |
+
os.makedirs(output_dir, exist_ok=True)
|
24 |
+
|
25 |
+
# Constants
|
26 |
+
bases = {
|
27 |
+
"Cartoon": "frankjoshua/toonyou_beta6",
|
28 |
+
"Realistic": "emilianJR/epiCRealism",
|
29 |
+
"3d": "Lykon/DreamShaper",
|
30 |
+
"Anime": "Yntec/mistoonAnime2"
|
31 |
+
}
|
32 |
+
step_loaded = None
|
33 |
+
base_loaded = "Realistic"
|
34 |
+
motion_loaded = None
|
35 |
+
|
36 |
+
# Thiết lập thiết bị CPU và kiểu dữ liệu
|
37 |
+
device = "cpu"
|
38 |
+
dtype = torch.float32
|
39 |
+
|
40 |
+
# Khởi tạo pipeline
|
41 |
+
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
|
42 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
43 |
+
pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear"
|
44 |
+
)
|
45 |
+
pipe.safety_checker = None
|
46 |
+
|
47 |
+
# Mô hình dữ liệu cho request
|
48 |
+
class VideoRequest(BaseModel):
|
49 |
+
prompt: str
|
50 |
+
base: str = "Realistic"
|
51 |
+
motion: str = ""
|
52 |
+
step: int = 1
|
53 |
+
|
54 |
+
# Endpoint tạo video
|
55 |
+
@app.post("/generate_video")
|
56 |
+
async def generate_video(request: VideoRequest):
|
57 |
+
global step_loaded, base_loaded, motion_loaded
|
58 |
+
prompt = request.prompt
|
59 |
+
base = request.base
|
60 |
+
motion = request.motion
|
61 |
+
step = request.step
|
62 |
+
|
63 |
+
logger.info(f"Tạo video với prompt: {prompt}, base: {base}, motion: {motion}, steps: {step}")
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Kiểm tra base hợp lệ
|
67 |
+
if base not in bases:
|
68 |
+
raise HTTPException(status_code=400, detail="Base model không hợp lệ")
|
69 |
+
|
70 |
+
# Tải AnimateDiff Lightning checkpoint
|
71 |
+
if step_loaded != step:
|
72 |
+
repo = "ByteDance/AnimateDiff-Lightning"
|
73 |
+
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
74 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
75 |
+
step_loaded = step
|
76 |
+
|
77 |
+
# Tải mô hình cơ sở nếu thay đổi
|
78 |
+
if base_loaded != base:
|
79 |
+
pipe.unet.load_state_dict(
|
80 |
+
torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device),
|
81 |
+
strict=False
|
82 |
+
)
|
83 |
+
base_loaded = base
|
84 |
+
|
85 |
+
# Tải motion LoRA nếu có
|
86 |
+
if motion_loaded != motion:
|
87 |
+
try:
|
88 |
+
pipe.unload_lora_weights()
|
89 |
+
if motion:
|
90 |
+
pipe.load_lora_weights(motion, adapter_name="motion")
|
91 |
+
pipe.set_adapters(["motion"], [0.7])
|
92 |
+
motion_loaded = motion
|
93 |
+
except Exception as e:
|
94 |
+
logger.warning(f"Không thể tải motion LoRA: {e}")
|
95 |
+
motion_loaded = ""
|
96 |
+
|
97 |
+
# Suy luận
|
98 |
+
with torch.no_grad():
|
99 |
+
output = pipe(
|
100 |
+
prompt=prompt,
|
101 |
+
guidance_scale=1.2,
|
102 |
+
num_inference_steps=step,
|
103 |
+
num_frames=32,
|
104 |
+
width=256,
|
105 |
+
height=256
|
106 |
+
)
|
107 |
+
|
108 |
+
# Chuẩn hóa khung hình cho 8 giây
|
109 |
+
frames = output.frames[0]
|
110 |
+
fps = 24
|
111 |
+
target_frames = fps * 8
|
112 |
+
if len(frames) < target_frames:
|
113 |
+
frames = np.tile(frames, (target_frames // len(frames) + 1, 1, 1, 1))[:target_frames]
|
114 |
+
else:
|
115 |
+
frames = frames[:target_frames]
|
116 |
+
|
117 |
+
# Tạo video
|
118 |
+
name = str(uuid.uuid4()).replace("-", "")
|
119 |
+
video_path = os.path.join(output_dir, f"{name}.mp4")
|
120 |
+
export_to_video(frames, video_path, fps=fps)
|
121 |
+
|
122 |
+
if not os.path.exists(video_path):
|
123 |
+
raise FileNotFoundError("Video không được tạo")
|
124 |
+
|
125 |
+
logger.info(f"Video sẵn sàng tại {video_path}")
|
126 |
+
|
127 |
+
# Trả về file video
|
128 |
+
return FileResponse(video_path, media_type="video/mp4", filename=f"{name}.mp4")
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
logger.error(f"Lỗi khi tạo video: {e}")
|
132 |
+
raise HTTPException(status_code=500, detail=str(e))
|
133 |
+
|
134 |
+
# Endpoint kiểm tra trạng thái
|
135 |
+
@app.get("/")
|
136 |
+
async def root():
|
137 |
+
return {"message": "FastAPI AnimateDiff-Lightning API on Hugging Face Spaces"}
|
138 |
+
```
|