File size: 27,596 Bytes
3c7902c 9850940 3c7902c 9850940 3c7902c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
import os
import random
import uuid
from base64 import b64encode
from datetime import datetime
from mimetypes import guess_type
from pathlib import Path
from typing import Optional
import json
import spaces
import spaces
import gradio as gr
from feedback import save_feedback, scheduler
from gradio.components.chatbot import OptionDict
from huggingface_hub import InferenceClient
from pandas import DataFrame
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
BASE_MODEL = os.getenv("MODEL", "google/gemma-3-12b-pt")
ZERO_GPU = (
bool(os.getenv("ZERO_GPU", False)) or True
if str(os.getenv("ZERO_GPU")).lower() == "true"
else False
)
TEXT_ONLY = (
bool(os.getenv("TEXT_ONLY", False)) or True
if str(os.getenv("TEXT_ONLY")).lower() == "true"
else False
)
def create_inference_client(
model: Optional[str] = None, base_url: Optional[str] = None
) -> InferenceClient | dict:
"""Create an InferenceClient instance with the given model or environment settings.
This function will run the model locally if ZERO_GPU is set to True.
This function will run the model locally if ZERO_GPU is set to True.
Args:
model: Optional model identifier to use. If not provided, will use environment settings.
base_url: Optional base URL for the inference API.
Returns:
Either an InferenceClient instance or a dictionary with pipeline and tokenizer
"""
if ZERO_GPU:
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, load_in_8bit=True)
return {
"pipeline": pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=2000,
),
"tokenizer": tokenizer
}
else:
return InferenceClient(
token=os.getenv("HF_TOKEN"),
model=model if model else (BASE_MODEL if not base_url else None),
base_url=base_url,
)
CLIENT = create_inference_client()
def get_persistent_storage_path(filename: str) -> tuple[Path, bool]:
"""Check if persistent storage is available and return the appropriate path.
Args:
filename: The name of the file to check/create
Returns:
A tuple containing (file_path, is_persistent)
"""
persistent_path = Path("/data") / filename
local_path = Path(__file__).parent / filename
# Check if persistent storage is available and writable
use_persistent = False
if Path("/data").exists() and Path("/data").is_dir():
try:
# Test if we can write to the directory
test_file = Path("/data/write_test.tmp")
test_file.touch()
test_file.unlink() # Remove the test file
use_persistent = True
except (PermissionError, OSError):
print("Persistent storage exists but is not writable, falling back to local storage")
use_persistent = False
return (persistent_path if use_persistent else local_path, use_persistent)
def load_languages() -> dict[str, str]:
"""Load languages from JSON file or persistent storage"""
languages_path, use_persistent = get_persistent_storage_path("languages.json")
local_path = Path(__file__).parent / "languages.json"
# If persistent storage is available but file doesn't exist yet, copy the local file to persistent storage
if use_persistent and not languages_path.exists():
try:
if local_path.exists():
import shutil
shutil.copy(local_path, languages_path)
print(f"Copied languages to persistent storage at {languages_path}")
else:
with open(languages_path, "w", encoding="utf-8") as f:
json.dump({"English": "You are a helpful assistant."}, f, ensure_ascii=False, indent=2)
print(f"Created new languages file in persistent storage at {languages_path}")
except Exception as e:
print(f"Error setting up persistent storage: {e}")
languages_path = local_path # Fall back to local path if any error occurs
if not languages_path.exists() and local_path.exists():
languages_path = local_path
if languages_path.exists():
with open(languages_path, "r", encoding="utf-8") as f:
return json.load(f)
else:
default_languages = {"English": "You are a helpful assistant."}
return default_languages
LANGUAGES = load_languages()
USER_AGREEMENT = """
You have been asked to participate in a research study conducted by Lingo Lab from the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (M.I.T.), together with huggingface.
The purpose of this study is the collection of multilingual human feedback to improve language models. As part of this study you will interat with a language model in a langugage of your choice, and provide indication to wether its reponses are helpful or not.
Your name and personal data will never be recorded. You may decline further participation, at any time, without adverse consequences.There are no foreseeable risks or discomforts for participating in this study. Note participating in the study may pose risks that are currently unforeseeable. If you have questions or concerns about the study, you can contact the researchers at leshem@mit.edu. If you have any questions about your rights as a participant in this research (E-6610), feel you have been harmed, or wish to discuss other study-related concerns with someone who is not part of the research team, you can contact the M.I.T. Committee on the Use of Humans as Experimental Subjects (COUHES) by phone at (617) 253-8420, or by email at couhes@mit.edu.
Clicking on the next button at the bottom of this page indicates that you are at least 18 years of age and willingly agree to participate in the research voluntarily.
"""
def add_user_message(history, message):
if isinstance(message, dict) and "files" in message:
for x in message["files"]:
history.append({"role": "user", "content": {"path": x}})
if message["text"] is not None:
history.append({"role": "user", "content": message["text"]})
else:
history.append({"role": "user", "content": message})
return history, gr.Textbox(value=None, interactive=False)
def format_system_message(language: str, history: list):
system_message = [
{
"role": "system",
"content": LANGUAGES.get(language, LANGUAGES["English"]),
}
]
if history and history[0]["role"] == "system":
history = history[1:]
history = system_message + history
return history
def format_history_as_messages(history: list):
messages = []
current_role = None
current_message_content = []
if TEXT_ONLY:
for entry in history:
messages.append({"role": entry["role"], "content": entry["content"]})
return messages
if TEXT_ONLY:
for entry in history:
messages.append({"role": entry["role"], "content": entry["content"]})
return messages
for entry in history:
content = entry["content"]
if entry["role"] != current_role:
if current_role is not None:
messages.append(
{"role": current_role, "content": current_message_content}
)
current_role = entry["role"]
current_message_content = []
if isinstance(content, tuple): # Handle file paths
for temp_path in content:
if space_host := os.getenv("SPACE_HOST"):
url = f"https://{space_host}/gradio_api/file%3D{temp_path}"
else:
url = _convert_path_to_data_uri(temp_path)
current_message_content.append(
{"type": "image_url", "image_url": {"url": url}}
)
elif isinstance(content, str): # Handle text
current_message_content.append({"type": "text", "text": content})
if current_role is not None:
messages.append({"role": current_role, "content": current_message_content})
return messages
def _convert_path_to_data_uri(path) -> str:
mime_type, _ = guess_type(path)
with open(path, "rb") as image_file:
data = image_file.read()
data_uri = f"data:{mime_type};base64," + b64encode(data).decode("utf-8")
return data_uri
def _is_file_safe(path) -> bool:
try:
return Path(path).is_file()
except Exception:
return ""
def _process_content(content) -> str | list[str]:
if isinstance(content, str) and _is_file_safe(content):
return _convert_path_to_data_uri(content)
elif isinstance(content, list) or isinstance(content, tuple):
return _convert_path_to_data_uri(content[0])
return content
def _process_rating(rating) -> int:
if isinstance(rating, str):
return 0
elif isinstance(rating, int):
return rating
else:
raise ValueError(f"Invalid rating: {rating}")
def add_fake_like_data(
history: list,
conversation_id: str,
session_id: str,
language: str,
liked: bool = False,
) -> None:
data = {
"index": len(history) - 1,
"value": history[-1],
"liked": liked,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
submit_conversation(
dataframe=dataframe,
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
@spaces.GPU
def call_pipeline(messages: list, language: str):
"""Call the appropriate model pipeline based on configuration"""
if ZERO_GPU:
tokenizer = CLIENT["tokenizer"]
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
)
response = CLIENT["pipeline"](
formatted_prompt,
clean_up_tokenization_spaces=False,
max_length=2000,
return_full_text=False,
)
return response[0]["generated_text"]
else:
response = CLIENT(
messages,
clean_up_tokenization_spaces=False,
max_length=2000,
)
return response[0]["generated_text"][-1]["content"]
def respond(
history: list,
language: str,
temperature: Optional[float] = None,
seed: Optional[int] = None,
) -> list:
"""Respond to the user message with a system message
Return the history with the new message"""
messages = format_history_as_messages(history)
if ZERO_GPU:
content = call_pipeline(messages, language)
else:
response = CLIENT.chat.completions.create(
messages=messages,
max_tokens=2000,
stream=False,
seed=seed,
temperature=temperature,
)
content = response.choices[0].message.content
message = gr.ChatMessage(role="assistant", content=content)
history.append(message)
return history
def update_dataframe(dataframe: DataFrame, history: list) -> DataFrame:
"""Update the dataframe with the new message"""
data = {
"index": 9999,
"value": None,
"liked": False,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
return dataframe
def wrangle_like_data(x: gr.LikeData, history) -> DataFrame:
"""Wrangle conversations and liked data into a DataFrame"""
if isinstance(x.index, int):
liked_index = x.index
else:
liked_index = x.index[0]
output_data = []
for idx, message in enumerate(history):
if isinstance(message, gr.ChatMessage):
message = message.__dict__
if idx == liked_index:
if x.liked is True:
message["metadata"] = {"title": "liked"}
elif x.liked is False:
message["metadata"] = {"title": "disliked"}
if message["metadata"] is None:
message["metadata"] = {}
elif not isinstance(message["metadata"], dict):
message["metadata"] = message["metadata"].__dict__
rating = message["metadata"].get("title")
if rating == "liked":
message["rating"] = 1
elif rating == "disliked":
message["rating"] = -1
else:
message["rating"] = 0
message["chosen"] = ""
message["rejected"] = ""
if message["options"]:
for option in message["options"]:
if not isinstance(option, dict):
option = option.__dict__
message[option["label"]] = option["value"]
else:
if message["rating"] == 1:
message["chosen"] = message["content"]
elif message["rating"] == -1:
message["rejected"] = message["content"]
output_data.append(
dict(
[(k, v) for k, v in message.items() if k not in ["metadata", "options"]]
)
)
return history, DataFrame(data=output_data)
def wrangle_edit_data(
x: gr.EditData,
history: list,
dataframe: DataFrame,
conversation_id: str,
session_id: str,
language: str,
) -> list:
"""Edit the conversation and add negative feedback if assistant message is edited, otherwise regenerate the message
Return the history with the new message"""
if isinstance(x.index, int):
index = x.index
else:
index = x.index[0]
original_message = gr.ChatMessage(
role="assistant", content=dataframe.iloc[index]["content"]
).__dict__
if history[index]["role"] == "user":
# Add feedback on original and corrected message
add_fake_like_data(
history=history[: index + 2],
conversation_id=conversation_id,
session_id=session_id,
language=language,
liked=True,
)
add_fake_like_data(
history=history[: index + 1] + [original_message],
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
history = respond(
history=history[: index + 1],
language=language,
temperature=random.randint(1, 100) / 100,
seed=random.randint(0, 1000000),
)
return history
else:
add_fake_like_data(
history=history[: index + 1],
conversation_id=conversation_id,
session_id=session_id,
language=language,
liked=True,
)
add_fake_like_data(
history=history[:index] + [original_message],
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
history = history[: index + 1]
history[-1]["options"] = [
OptionDict(label="chosen", value=x.value),
OptionDict(label="rejected", value=original_message["content"]),
]
return history
def wrangle_retry_data(
x: gr.RetryData,
history: list,
dataframe: DataFrame,
conversation_id: str,
session_id: str,
language: str,
) -> list:
"""Respond to the user message with a system message and add negative feedback on the original message
Return the history with the new message"""
add_fake_like_data(
history=history,
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
# Return the history without a new message
history = respond(
history=history[:-1],
language=language,
temperature=random.randint(1, 100) / 100,
seed=random.randint(0, 1000000),
)
return history, update_dataframe(dataframe, history)
def submit_conversation(dataframe, conversation_id, session_id, language):
""" "Submit the conversation to dataset repo"""
if dataframe.empty or len(dataframe) < 2:
gr.Info("No feedback to submit.")
return (gr.Dataframe(value=None, interactive=False), [])
dataframe["content"] = dataframe["content"].apply(_process_content)
dataframe["rating"] = dataframe["rating"].apply(_process_rating)
conversation = dataframe.to_dict(orient="records")
conversation_data = {
"conversation": conversation,
"timestamp": datetime.now().isoformat(),
"session_id": session_id,
"conversation_id": conversation_id,
"language": language,
}
save_feedback(input_object=conversation_data)
return (gr.Dataframe(value=None, interactive=False), [])
def open_add_language_modal():
return gr.Group(visible=True)
def close_add_language_modal():
return gr.Group(visible=False)
def save_new_language(lang_name, system_prompt):
"""Save the new language and system prompt to persistent storage if available, otherwise to local file."""
global LANGUAGES
languages_path, use_persistent = get_persistent_storage_path("languages.json")
local_path = Path(__file__).parent / "languages.json"
if languages_path.exists():
with open(languages_path, "r", encoding="utf-8") as f:
data = json.load(f)
else:
data = {}
data[lang_name] = system_prompt
with open(languages_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
if use_persistent and local_path != languages_path:
try:
with open(local_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"Error updating local backup: {e}")
LANGUAGES.update({lang_name: system_prompt})
return gr.Group(visible=False), gr.HTML("<script>window.location.reload();</script>"), gr.Dropdown(choices=list(LANGUAGES.keys()))
css = """
.options.svelte-pcaovb {
display: none !important;
}
.option.svelte-pcaovb {
display: none !important;
}
.retry-btn {
display: none !important;
}
/* Style for the add language button */
button#add-language-btn {
padding: 0 !important;
font-size: 30px !important;
font-weight: bold !important;
}
/* Style for the user agreement container */
.user-agreement-container {
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
max-height: 300px;
overflow-y: auto;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
margin-bottom: 10px;
}
/* Style for the consent modal */
.consent-modal {
position: fixed !important;
top: 50% !important;
left: 50% !important;
transform: translate(-50%, -50%) !important;
z-index: 9999 !important;
background: white !important;
padding: 10px !important;
border-radius: 8px !important;
box-shadow: 0 4px 10px rgba(0,0,0,0.2) !important;
max-width: 90% !important;
width: 600px !important;
}
/* Overlay for the consent modal */
.modal-overlay {
position: fixed !important;
top: 0 !important;
left: 0 !important;
width: 100% !important;
height: 100% !important;
background-color: rgba(0, 0, 0, 0.7) !important;
z-index: 9998 !important;
}
"""
def get_config(request: gr.Request):
"""Get configuration from cookies"""
config = {"feel_consent": False}
if request and hasattr(request, 'cookies'):
for key in config.keys():
if key in request.cookies:
config[key] = request.cookies[key] == 'true'
return config["feel_consent"]
js = '''function js(){
window.set_cookie = function(key, value){
document.cookie = key+'='+value+'; Path=/; SameSite=Strict';
return [value];
}
}'''
with gr.Blocks(css=css, js=js) as demo:
# State variable to track if user has consented
user_consented = gr.State(value=False)
# Main application interface (initially visible but will be conditionally shown)
with gr.Group() as main_app: # Remove explicit visible=True to let it be controlled dynamically
##############################
# Chatbot
##############################
gr.Markdown("""
# βΎοΈ FeeL - a real-time Feedback Loop for LMs
""")
with gr.Accordion("About") as explanation:
gr.Markdown(f"""
FeeL is a collaboration between Hugging Face and MIT.
It is a community-driven project to provide a real-time feedback loop for VLMs, where your feedback is continuously used to fine-tune the underlying models.
The [dataset](https://huggingface.co/datasets/{scheduler.repo_id}), [code](https://github.com/huggingface/feel) and [models](https://huggingface.co/collections/feel-fl/feel-models-67a9b6ef0fdd554315e295e8) are public.
Start by selecting your language, chat with the model with text and images and provide feedback in different ways.
- βοΈ Edit a message
- π/π Like or dislike a message
- π Regenerate a message
""")
with gr.Column():
gr.Markdown("Select your language or add a new one:")
with gr.Row():
language = gr.Dropdown(
choices=list(load_languages().keys()),
container=False,
show_label=False,
scale=8
)
add_language_btn = gr.Button(
"+",
elem_id="add-language-btn",
size="sm"
)
# Create a hidden group instead of a modal
with gr.Group(visible=False) as add_language_modal:
gr.Markdown(" Add New Language")
new_lang_name = gr.Textbox(label="Language Name", lines=1)
new_system_prompt = gr.Textbox(label="System Prompt", lines=4)
with gr.Row():
with gr.Column(scale=1):
save_language_btn = gr.Button("Save")
with gr.Column(scale=1):
cancel_language_btn = gr.Button("Cancel")
refresh_html = gr.HTML(visible=False)
session_id = gr.Textbox(
interactive=False,
value=str(uuid.uuid4()),
visible=False,
)
conversation_id = gr.Textbox(
interactive=False,
value=str(uuid.uuid4()),
visible=False,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
editable="all",
value=[
{
"role": "system",
"content": LANGUAGES[language.value],
}
],
type="messages",
feedback_options=["Like", "Dislike"],
)
chat_input = gr.Textbox(
interactive=True,
placeholder="Enter message or upload file...",
show_label=False,
submit_btn=True,
)
with gr.Accordion("Collected feedback", open=False):
dataframe = gr.Dataframe(wrap=True, label="Collected feedback")
submit_btn = gr.Button(value="πΎ Submit conversation", visible=False)
# Overlay for the consent modal
with gr.Group(elem_classes=["modal-overlay"], visible=False) as consent_overlay:
pass
# Consent popup
with gr.Group(elem_classes=["consent-modal"], visible=False) as consent_modal:
gr.Markdown("# User Agreement")
with gr.Group(elem_classes=["user-agreement-container"]):
gr.Markdown(USER_AGREEMENT)
consent_btn = gr.Button("I agree")
# Check consent on page load and show/hide components appropriately
def initialize_consent_status():
# This function will be called when the app loads
return False # Default to not consented
def update_visibility(has_consent):
# Show/hide components based on consent status
return (
gr.Group(visible=True), # main_app
gr.Group(visible=not has_consent), # consent_overlay
gr.Group(visible=not has_consent) # consent_modal
)
# Initialize app with consent checking
demo.load(fn=get_config, js=js, outputs=user_consented).then(
fn=update_visibility,
inputs=user_consented,
outputs=[main_app, consent_overlay, consent_modal]
)
# Function to handle consent button click
def handle_consent():
return True
consent_btn.click(
fn=handle_consent,
outputs=user_consented,
js="(value) => set_cookie('feel_consent', 'true')"
).then(
fn=update_visibility,
inputs=user_consented,
outputs=[main_app, consent_overlay, consent_modal]
)
##############################
# Deal with feedback
##############################
language.change(
fn=format_system_message,
inputs=[language, chatbot],
outputs=[chatbot],
)
chat_input.submit(
fn=add_user_message,
inputs=[chatbot, chat_input],
outputs=[chatbot, chat_input],
).then(respond, inputs=[chatbot, language], outputs=[chatbot]).then(
lambda: gr.Textbox(interactive=True), None, [chat_input]
).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe]).then(
submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
)
chatbot.like(
fn=wrangle_like_data,
inputs=[chatbot],
outputs=[chatbot, dataframe],
like_user_message=False,
).then(
submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
)
chatbot.retry(
fn=wrangle_retry_data,
inputs=[chatbot, dataframe, conversation_id, session_id, language],
outputs=[chatbot, dataframe],
)
chatbot.edit(
fn=wrangle_edit_data,
inputs=[chatbot, dataframe, conversation_id, session_id, language],
outputs=[chatbot],
).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe])
gr.on(
triggers=[submit_btn.click, chatbot.clear],
fn=submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
outputs=[dataframe, chatbot],
).then(
fn=lambda x: str(uuid.uuid4()),
inputs=[conversation_id],
outputs=[conversation_id],
)
def on_app_load():
global LANGUAGES
LANGUAGES = load_languages()
language_choices = list(LANGUAGES.keys())
return str(uuid.uuid4()), gr.Dropdown(choices=language_choices, value=language_choices[0])
demo.load(
fn=on_app_load,
inputs=None,
outputs=[session_id, language]
)
add_language_btn.click(
fn=lambda: gr.Group(visible=True),
outputs=[add_language_modal]
)
cancel_language_btn.click(
fn=lambda: gr.Group(visible=False),
outputs=[add_language_modal]
)
save_language_btn.click(
fn=save_new_language,
inputs=[new_lang_name, new_system_prompt],
outputs=[add_language_modal, refresh_html, language]
)
demo.launch() |