hbui commited on
Commit
0209d0e
·
verified ·
1 Parent(s): cd73f23

Update models/langOpen.py

Browse files

Updated prompt. Changed temp to 0.01. Added compression retriever.

Files changed (1) hide show
  1. models/langOpen.py +11 -6
models/langOpen.py CHANGED
@@ -9,18 +9,17 @@ from langchain.embeddings import OpenAIEmbeddings
9
  from langchain.prompts import PromptTemplate
10
  from langchain_pinecone import PineconeVectorStore
11
 
12
- prompt_template = """Answer the question using the given context to the best of your ability.
13
- If you don't know, answer I don't know.
 
14
  Context: {context}
15
  Topic: {topic}
16
 
17
  Use the following example format for your answer:
18
- [FORMAT]
19
  Answer:
20
  The answer to the user question.
21
  Reference:
22
  The list of references to the specific sections of the documents that support your answer.
23
- [END_FORMAT]
24
  """
25
 
26
 
@@ -30,7 +29,7 @@ PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "t
30
  class LangOpen:
31
  def __init__(self, model_name: str) -> None:
32
  self.index = self.initialize_index("langOpen")
33
- self.llm = ChatOpenAI(temperature=0.3, model=model_name)
34
  self.chain = LLMChain(llm=self.llm, prompt=PROMPT)
35
 
36
  def initialize_index(self, index_name):
@@ -43,7 +42,13 @@ class LangOpen:
43
  def get_response(self, query_str):
44
  print("query_str: ", query_str)
45
  print("model_name: ", self.llm.model_name)
46
- docs = self.index.similarity_search(query_str, k=4)
 
 
 
 
 
 
47
  inputs = [{"context": doc.page_content, "topic": query_str} for doc in docs]
48
  result = self.chain.apply(inputs)[0]["text"]
49
  return result
 
9
  from langchain.prompts import PromptTemplate
10
  from langchain_pinecone import PineconeVectorStore
11
 
12
+ prompt_template = """You are an expert on California Drinking Water Regulations.
13
+ Answer the question solely using relevant regulations in the given context. DO NOT USE ANY OTHER SOURCES.
14
+ If the given context does not contain the relevant information, say so.
15
  Context: {context}
16
  Topic: {topic}
17
 
18
  Use the following example format for your answer:
 
19
  Answer:
20
  The answer to the user question.
21
  Reference:
22
  The list of references to the specific sections of the documents that support your answer.
 
23
  """
24
 
25
 
 
29
  class LangOpen:
30
  def __init__(self, model_name: str) -> None:
31
  self.index = self.initialize_index("langOpen")
32
+ self.llm = ChatOpenAI(temperature=0.01, model=model_name)
33
  self.chain = LLMChain(llm=self.llm, prompt=PROMPT)
34
 
35
  def initialize_index(self, index_name):
 
42
  def get_response(self, query_str):
43
  print("query_str: ", query_str)
44
  print("model_name: ", self.llm.model_name)
45
+ #docs = self.index.similarity_search(query_str, k=4)
46
+ vectorstore_retriever = self.index.as_retriever(search_type="similarity", search_kwargs={"k": 10})
47
+ compressor = CohereRerank()
48
+ compression_retriever = ContextualCompressionRetriever(
49
+ base_compressor=compressor, base_retriever=vectorstore_retriever
50
+ )
51
+ docs = compression_retriever.get_relevant_documents(query_str)
52
  inputs = [{"context": doc.page_content, "topic": query_str} for doc in docs]
53
  result = self.chain.apply(inputs)[0]["text"]
54
  return result