api: Production ready.
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
import json
|
7 |
import time
|
8 |
import uuid
|
|
|
9 |
import uvicorn
|
10 |
|
11 |
from contextlib import asynccontextmanager
|
@@ -13,74 +14,175 @@ from fastapi import FastAPI, HTTPException
|
|
13 |
from fastapi.responses import JSONResponse, StreamingResponse
|
14 |
from gradio_client import Client
|
15 |
from pydantic import BaseModel
|
16 |
-
from typing import AsyncGenerator, Optional
|
17 |
|
18 |
-
# Default AI model
|
19 |
MODEL = "JARVIS: 2.1.3"
|
20 |
|
21 |
-
#
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
"""
|
27 |
-
Initialize Gradio client at app startup.
|
28 |
-
"""
|
29 |
-
global jarvis
|
30 |
-
print("Initializing Gradio AI client...")
|
31 |
-
try:
|
32 |
-
jarvis = Client("hadadrjt/ai")
|
33 |
-
print(f"Connected to Gradio AI client at: {jarvis.src}")
|
34 |
-
|
35 |
-
jarvis.predict(new=MODEL, api_name="/change_model")
|
36 |
-
print(f"Default model set to: {MODEL}")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
print(f"Error initializing Gradio client: {e}")
|
41 |
-
yield
|
42 |
-
|
43 |
-
app = FastAPI(lifespan=lifespan)
|
44 |
|
45 |
class ResponseRequest(BaseModel):
|
46 |
"""
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
-
|
|
|
|
|
|
|
51 |
"""
|
52 |
-
model: Optional[str] =
|
53 |
input: str
|
54 |
stream: Optional[bool] = False
|
|
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
"""
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"""
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
try:
|
70 |
for partial in jarvis_response:
|
|
|
71 |
text = partial[0][0][1]
|
72 |
|
|
|
73 |
if text.startswith(buffer):
|
74 |
delta = text[len(buffer):]
|
75 |
else:
|
76 |
delta = text
|
77 |
|
78 |
-
buffer = text
|
79 |
|
80 |
-
# Skip empty chunks
|
81 |
if delta == "":
|
|
|
82 |
continue
|
83 |
|
|
|
84 |
chunk = {
|
85 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
86 |
"object": "chat.completion.chunk",
|
@@ -95,9 +197,14 @@ async def event_generator(user_input: str, model: str) -> AsyncGenerator[str, No
|
|
95 |
]
|
96 |
}
|
97 |
|
|
|
98 |
yield f"data: {json.dumps(chunk)}\n\n"
|
99 |
|
100 |
-
#
|
|
|
|
|
|
|
|
|
101 |
done_chunk = {
|
102 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
103 |
"object": "chat.completion.chunk",
|
@@ -114,6 +221,7 @@ async def event_generator(user_input: str, model: str) -> AsyncGenerator[str, No
|
|
114 |
yield f"data: {json.dumps(done_chunk)}\n\n"
|
115 |
|
116 |
except Exception as e:
|
|
|
117 |
error_chunk = {
|
118 |
"error": {"message": f"Streaming error: {str(e)}"}
|
119 |
}
|
@@ -122,30 +230,49 @@ async def event_generator(user_input: str, model: str) -> AsyncGenerator[str, No
|
|
122 |
@app.post("/v1/responses")
|
123 |
async def responses(req: ResponseRequest):
|
124 |
"""
|
125 |
-
Main endpoint to get AI
|
126 |
-
Supports streaming
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
"""
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
raise HTTPException(status_code=503, detail="AI service not initialized or failed to connect.")
|
132 |
-
|
133 |
user_input = req.input
|
134 |
-
model = req.model or MODEL
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
|
139 |
-
if
|
140 |
-
|
|
|
141 |
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
buffer = ""
|
145 |
for partial in jarvis_response:
|
146 |
text = partial[0][0][1]
|
147 |
-
buffer = text
|
|
|
|
|
|
|
|
|
148 |
|
|
|
149 |
response = {
|
150 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
151 |
"object": "chat.completion",
|
@@ -160,20 +287,41 @@ async def responses(req: ResponseRequest):
|
|
160 |
},
|
161 |
"finish_reason": "stop"
|
162 |
}
|
163 |
-
]
|
|
|
164 |
}
|
165 |
|
|
|
166 |
return JSONResponse(response)
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
@app.get("/")
|
169 |
def root():
|
170 |
"""
|
171 |
-
|
|
|
172 |
"""
|
173 |
-
|
174 |
-
return {"status": "API is running", "jarvis_service": True}
|
175 |
-
else:
|
176 |
-
return {"status": "API is running", "jarvis_service": False, "message": "AI service not ready."}
|
177 |
|
|
|
178 |
if __name__ == "__main__":
|
179 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
6 |
import json
|
7 |
import time
|
8 |
import uuid
|
9 |
+
import asyncio
|
10 |
import uvicorn
|
11 |
|
12 |
from contextlib import asynccontextmanager
|
|
|
14 |
from fastapi.responses import JSONResponse, StreamingResponse
|
15 |
from gradio_client import Client
|
16 |
from pydantic import BaseModel
|
17 |
+
from typing import AsyncGenerator, Optional, Dict, List, Tuple
|
18 |
|
19 |
+
# Default AI model name used when no model is specified by user
|
20 |
MODEL = "JARVIS: 2.1.3"
|
21 |
|
22 |
+
# Session store keeps track of active sessions.
|
23 |
+
# Each session_id maps to a tuple:
|
24 |
+
# (last_update_timestamp, session_data_dict)
|
25 |
+
# session_data_dict contains:
|
26 |
+
# - "model": the AI model name used in this session
|
27 |
+
# - "history": list of past chat messages (input and response)
|
28 |
+
# - "client": the Gradio Client instance specific to this session
|
29 |
+
session_store: Dict[str, Tuple[float, Dict]] = {}
|
30 |
|
31 |
+
# Duration (in seconds) after which inactive sessions are removed
|
32 |
+
EXPIRE = 3600 # 1 hour
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Create FastAPI app instance
|
35 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
36 |
|
37 |
class ResponseRequest(BaseModel):
|
38 |
"""
|
39 |
+
Defines the expected structure of the request body for /v1/responses endpoint.
|
40 |
+
|
41 |
+
Attributes:
|
42 |
+
- model: Optional; specifies which AI model to use. Defaults to MODEL if not provided.
|
43 |
+
- input: The user's input text to send to the AI.
|
44 |
+
- stream: Optional; if True, the response will be streamed incrementally.
|
45 |
+
- session_id: Optional; unique identifier for the user's session. If missing, a new session will be created.
|
46 |
"""
|
47 |
+
model: Optional[str] = None
|
48 |
input: str
|
49 |
stream: Optional[bool] = False
|
50 |
+
session_id: Optional[str] = None
|
51 |
|
52 |
+
def cleanup_expired_sessions():
|
53 |
+
"""
|
54 |
+
Remove sessions that have been inactive for longer than EXPIRE.
|
55 |
+
This helps free up memory by deleting old sessions and closing their clients.
|
56 |
+
"""
|
57 |
+
now = time.time()
|
58 |
+
expired_sessions = [
|
59 |
+
sid for sid, (last_update, _) in session_store.items()
|
60 |
+
if now - last_update > EXPIRE
|
61 |
+
]
|
62 |
+
for sid in expired_sessions:
|
63 |
+
# Attempt to close the Gradio client associated with the session
|
64 |
+
_, data = session_store[sid]
|
65 |
+
client = data.get("client")
|
66 |
+
if client:
|
67 |
+
try:
|
68 |
+
client.close()
|
69 |
+
except Exception:
|
70 |
+
# Ignore errors during client close to avoid crashing cleanup
|
71 |
+
pass
|
72 |
+
# Remove the session from the store
|
73 |
+
del session_store[sid]
|
74 |
+
|
75 |
+
def create_client_for_model(model: str) -> Client:
|
76 |
"""
|
77 |
+
Create a new Gradio Client instance and set it to use the specified AI model.
|
78 |
+
|
79 |
+
Parameters:
|
80 |
+
- model: The name of the AI model to initialize the client with.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
- A new Gradio Client instance configured with the given model.
|
84 |
"""
|
85 |
+
client = Client("hadadrjt/ai")
|
86 |
+
# Set the model on the Gradio client by calling the /change_model API
|
87 |
+
client.predict(new=model, api_name="/change_model")
|
88 |
+
return client
|
89 |
|
90 |
+
def get_or_create_session(session_id: Optional[str], model: str) -> str:
|
91 |
+
"""
|
92 |
+
Retrieve an existing session by session_id or create a new one if it doesn't exist.
|
93 |
+
Also cleans up expired sessions before proceeding.
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
- session_id: The unique identifier of the session (optional).
|
97 |
+
- model: The AI model to use for this session.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
- The session_id for the active or newly created session.
|
101 |
+
"""
|
102 |
+
cleanup_expired_sessions()
|
103 |
|
104 |
+
# If no session_id provided or session does not exist, create a new session
|
105 |
+
if not session_id or session_id not in session_store:
|
106 |
+
session_id = str(uuid.uuid4()) # Generate a new unique session ID
|
107 |
+
client = create_client_for_model(model) # Create a new client for this session
|
108 |
+
session_store[session_id] = (time.time(), {
|
109 |
+
"model": model,
|
110 |
+
"history": [],
|
111 |
+
"client": client
|
112 |
+
})
|
113 |
+
else:
|
114 |
+
# Session exists, update last access time and check if model changed
|
115 |
+
last_update, data = session_store[session_id]
|
116 |
+
if data["model"] != model:
|
117 |
+
# If model changed, close old client and create a new one with the new model
|
118 |
+
old_client = data.get("client")
|
119 |
+
if old_client:
|
120 |
+
try:
|
121 |
+
old_client.close()
|
122 |
+
except Exception:
|
123 |
+
pass # Ignore errors on close
|
124 |
+
new_client = create_client_for_model(model)
|
125 |
+
data["model"] = model
|
126 |
+
data["client"] = new_client
|
127 |
+
session_store[session_id] = (time.time(), data)
|
128 |
+
else:
|
129 |
+
# Just update the last access time to keep session alive
|
130 |
+
session_store[session_id] = (time.time(), data)
|
131 |
+
|
132 |
+
return session_id
|
133 |
+
|
134 |
+
async def event_generator(user_input: str, model: str, session_id: str) -> AsyncGenerator[str, None]:
|
135 |
+
"""
|
136 |
+
Asynchronous generator that streams AI responses incrementally as Server-Sent Events (SSE).
|
137 |
+
|
138 |
+
Parameters:
|
139 |
+
- user_input: The input text from the user.
|
140 |
+
- model: The AI model to use.
|
141 |
+
- session_id: The unique session identifier.
|
142 |
+
|
143 |
+
Yields:
|
144 |
+
- JSON-formatted chunks representing incremental AI response deltas.
|
145 |
+
"""
|
146 |
+
last_update, session_data = session_store.get(session_id, (0, None))
|
147 |
+
if session_data is None:
|
148 |
+
# Session not found; yield error and stop
|
149 |
+
yield f"data: {json.dumps({'error': 'Session not found'})}\n\n"
|
150 |
+
return
|
151 |
+
|
152 |
+
client = session_data["client"]
|
153 |
+
if client is None:
|
154 |
+
# Client missing for session; yield error and stop
|
155 |
+
yield f"data: {json.dumps({'error': 'AI client not available'})}\n\n"
|
156 |
+
return
|
157 |
|
158 |
+
try:
|
159 |
+
# Submit the user input to the AI model via Gradio client
|
160 |
+
jarvis_response = client.submit(multi={"text": user_input}, api_name="/api")
|
161 |
+
except Exception as e:
|
162 |
+
# If submission fails, yield error and stop
|
163 |
+
yield f"data: {json.dumps({'error': f'Failed to submit to AI: {str(e)}'})}\n\n"
|
164 |
+
return
|
165 |
+
|
166 |
+
buffer = "" # Buffer to track full response text progressively
|
167 |
|
168 |
try:
|
169 |
for partial in jarvis_response:
|
170 |
+
# Extract the current partial text from the response
|
171 |
text = partial[0][0][1]
|
172 |
|
173 |
+
# Calculate the delta (new text since last chunk)
|
174 |
if text.startswith(buffer):
|
175 |
delta = text[len(buffer):]
|
176 |
else:
|
177 |
delta = text
|
178 |
|
179 |
+
buffer = text # Update buffer with latest full text
|
180 |
|
|
|
181 |
if delta == "":
|
182 |
+
# Skip empty delta chunks
|
183 |
continue
|
184 |
|
185 |
+
# Prepare chunk data in OpenAI streaming format
|
186 |
chunk = {
|
187 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
188 |
"object": "chat.completion.chunk",
|
|
|
197 |
]
|
198 |
}
|
199 |
|
200 |
+
# Yield the chunk as a Server-Sent Event
|
201 |
yield f"data: {json.dumps(chunk)}\n\n"
|
202 |
|
203 |
+
# After streaming completes, save the full input-response pair to session history
|
204 |
+
session_data["history"].append({"input": user_input, "response": buffer})
|
205 |
+
session_store[session_id] = (time.time(), session_data) # Update last access time
|
206 |
+
|
207 |
+
# Send a final chunk signaling completion of the stream
|
208 |
done_chunk = {
|
209 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
210 |
"object": "chat.completion.chunk",
|
|
|
221 |
yield f"data: {json.dumps(done_chunk)}\n\n"
|
222 |
|
223 |
except Exception as e:
|
224 |
+
# If streaming fails at any point, yield an error chunk
|
225 |
error_chunk = {
|
226 |
"error": {"message": f"Streaming error: {str(e)}"}
|
227 |
}
|
|
|
230 |
@app.post("/v1/responses")
|
231 |
async def responses(req: ResponseRequest):
|
232 |
"""
|
233 |
+
Main API endpoint to get AI responses.
|
234 |
+
Supports both streaming and non-streaming modes.
|
235 |
+
|
236 |
+
Workflow:
|
237 |
+
- Validate or create session.
|
238 |
+
- Ensure AI client is available.
|
239 |
+
- Handle streaming or full response accordingly.
|
240 |
+
- Save chat history per session.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
- JSON response with AI output and session ID.
|
244 |
"""
|
245 |
+
model = req.model or MODEL # Use requested model or default
|
246 |
+
session_id = get_or_create_session(req.session_id, model) # Get or create session
|
247 |
+
last_update, session_data = session_store[session_id]
|
|
|
|
|
248 |
user_input = req.input
|
|
|
249 |
|
250 |
+
client = session_data["client"]
|
251 |
+
if client is None:
|
252 |
+
# If client is missing, return 503 error
|
253 |
+
raise HTTPException(status_code=503, detail="AI client not available")
|
254 |
|
255 |
+
if req.stream:
|
256 |
+
# If streaming requested, return a streaming response using event_generator
|
257 |
+
return StreamingResponse(event_generator(user_input, model, session_id), media_type="text/event-stream")
|
258 |
|
259 |
+
# Non-streaming request: submit input and collect full response
|
260 |
+
try:
|
261 |
+
jarvis_response = client.submit(multi={"text": user_input}, api_name="/api")
|
262 |
+
except Exception as e:
|
263 |
+
# Return 500 error if submission fails
|
264 |
+
raise HTTPException(status_code=500, detail=f"Failed to submit to AI: {str(e)}")
|
265 |
|
266 |
buffer = ""
|
267 |
for partial in jarvis_response:
|
268 |
text = partial[0][0][1]
|
269 |
+
buffer = text # Update buffer with latest full response
|
270 |
+
|
271 |
+
# Save input and response to session history and update last access time
|
272 |
+
session_data["history"].append({"input": user_input, "response": buffer})
|
273 |
+
session_store[session_id] = (time.time(), session_data)
|
274 |
|
275 |
+
# Prepare the JSON response in OpenAI style format
|
276 |
response = {
|
277 |
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
|
278 |
"object": "chat.completion",
|
|
|
287 |
},
|
288 |
"finish_reason": "stop"
|
289 |
}
|
290 |
+
],
|
291 |
+
"session_id": session_id # Return session_id so client can reuse it
|
292 |
}
|
293 |
|
294 |
+
# Return the JSON response
|
295 |
return JSONResponse(response)
|
296 |
|
297 |
+
@app.get("/v1/history")
|
298 |
+
async def get_history(session_id: Optional[str] = None):
|
299 |
+
"""
|
300 |
+
Endpoint to retrieve chat history for a given session.
|
301 |
+
|
302 |
+
Parameters:
|
303 |
+
- session_id: The unique session identifier.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
- JSON object containing session_id and list of past input-response pairs.
|
307 |
+
|
308 |
+
Raises:
|
309 |
+
- 404 error if session_id is missing or session does not exist.
|
310 |
+
"""
|
311 |
+
if not session_id or session_id not in session_store:
|
312 |
+
raise HTTPException(status_code=404, detail="Session not found or session_id missing.")
|
313 |
+
|
314 |
+
_, session_data = session_store[session_id]
|
315 |
+
return {"session_id": session_id, "history": session_data["history"]}
|
316 |
+
|
317 |
@app.get("/")
|
318 |
def root():
|
319 |
"""
|
320 |
+
Simple health check endpoint.
|
321 |
+
Returns basic status indicating if API is running.
|
322 |
"""
|
323 |
+
return {"status": "API is running"}
|
|
|
|
|
|
|
324 |
|
325 |
+
# Run the app with Uvicorn ASGI server when executed directly
|
326 |
if __name__ == "__main__":
|
327 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|