Spaces:
Running
Running
ai: Update Next-Gen logic.
Browse files- app.py +1 -1
- src/client/chat_handler.py +182 -88
- src/ui/interface.py +2 -1
app.py
CHANGED
@@ -16,4 +16,4 @@ if __name__ == "__main__":
|
|
16 |
|
17 |
# Call the 'launch' method on the 'app' object to start the user interface.
|
18 |
# This typically opens the UI window or begins the event loop, making the application interactive.
|
19 |
-
app.queue(default_concurrency_limit=2).launch(show_api=False)
|
|
|
16 |
|
17 |
# Call the 'launch' method on the 'app' object to start the user interface.
|
18 |
# This typically opens the UI window or begins the event loop, making the application interactive.
|
19 |
+
app.queue(default_concurrency_limit=2).launch(show_api=False, quiet=True)
|
src/client/chat_handler.py
CHANGED
@@ -16,51 +16,51 @@ from src.tools.deep_search import SearchTools # Import SearchTools class for de
|
|
16 |
import gradio as gr # Import Gradio library for UI and request handling
|
17 |
|
18 |
# Define an asynchronous function 'respond' to process user messages and generate AI responses
|
19 |
-
# This
|
20 |
-
#
|
21 |
async def respond(
|
22 |
message, # Incoming user message, can be a string or a dictionary containing text and files
|
23 |
-
history: List[Any], # List containing conversation history as pairs of user and assistant messages
|
24 |
-
model_label, # Label/key to select the AI model from
|
25 |
-
temperature, # Sampling temperature controlling randomness of AI response generation
|
26 |
-
top_k, # Number of highest probability tokens to keep for sampling
|
27 |
-
min_p, # Minimum probability threshold for token sampling
|
28 |
-
top_p, # Cumulative probability threshold for nucleus sampling
|
29 |
-
repetition_penalty, # Penalty factor to reduce repetitive tokens in generated text
|
30 |
-
thinking, # Boolean flag indicating if AI should operate in "thinking" mode
|
31 |
-
image_gen, # Boolean flag to enable image generation commands
|
32 |
-
audio_gen, # Boolean flag to enable audio generation commands
|
33 |
-
search_gen, # Boolean flag to enable deep search commands
|
34 |
request: gr.Request # Gradio request object to access session information such as session hash
|
35 |
):
|
36 |
-
# Select the AI model based on the provided label,
|
37 |
selected_model = model.get(model_label, list(model.values())[0])
|
38 |
|
39 |
-
# Instantiate SearchTools to enable deep search capabilities
|
40 |
search_tools = SearchTools()
|
41 |
|
42 |
-
# Retrieve session ID from the Gradio request's session hash, generate
|
43 |
session_id = request.session_hash or str(uuid.uuid4())
|
44 |
|
45 |
-
# Initialize an empty conversation history for this session if it does not already exist
|
46 |
if session_id not in session:
|
47 |
session[session_id] = []
|
48 |
|
49 |
# Determine the mode string based on the 'thinking' flag, affects AI response generation behavior
|
50 |
mode = "/think" if thinking else "/no_think"
|
51 |
|
52 |
-
# Initialize variables for user input text and any attached files
|
53 |
input = ""
|
54 |
files = None
|
55 |
|
56 |
-
# Check if the incoming message is a dictionary
|
57 |
if isinstance(message, dict):
|
58 |
# Extract the text content from the message dictionary, default to empty string if missing
|
59 |
input = message.get("text", "")
|
60 |
-
# Extract the first file from the files list if present, otherwise
|
61 |
files = message.get("files")[0] if message.get("files") else None
|
62 |
else:
|
63 |
-
# If the message is a simple string, assign it directly to input
|
64 |
input = message
|
65 |
|
66 |
# Strip leading and trailing whitespace from the input for clean processing
|
@@ -68,7 +68,7 @@ async def respond(
|
|
68 |
# Convert the stripped input to lowercase for case-insensitive command detection
|
69 |
lowered_input = stripped_input.lower()
|
70 |
|
71 |
-
# If the input is empty after stripping, yield an empty list and exit
|
72 |
if not stripped_input:
|
73 |
yield []
|
74 |
return
|
@@ -78,15 +78,14 @@ async def respond(
|
|
78 |
yield []
|
79 |
return
|
80 |
|
81 |
-
#
|
82 |
-
#
|
83 |
-
# a flat list of dicts with "role" and "content" keys.
|
84 |
new_history = []
|
85 |
for entry in history:
|
86 |
# Ensure the entry is a list with exactly two elements: user message and assistant message
|
87 |
if isinstance(entry, list) and len(entry) == 2:
|
88 |
user_msg, assistant_msg = entry
|
89 |
-
# Append the user message with role 'user' to the new history if not None
|
90 |
if user_msg is not None:
|
91 |
new_history.append({"role": "user", "content": user_msg})
|
92 |
# Append the assistant message with role 'assistant' if it exists and is not None
|
@@ -96,68 +95,100 @@ async def respond(
|
|
96 |
# Update the global session dictionary with the newly formatted conversation history for this session
|
97 |
session[session_id] = new_history
|
98 |
|
99 |
-
# Handle audio generation command if enabled and input starts with '/audio'
|
100 |
if audio_gen and lowered_input.startswith("/audio"):
|
101 |
# Extract the audio instruction text after the '/audio' command prefix and strip whitespace
|
102 |
audio_instruction = input[6:].strip()
|
103 |
-
# If no instruction text is provided, yield empty and exit early
|
104 |
if not audio_instruction:
|
105 |
yield []
|
106 |
return
|
107 |
try:
|
108 |
# Asynchronously create audio content based on the instruction using AudioGeneration class
|
109 |
audio = await AudioGeneration.create_audio(audio_instruction)
|
110 |
-
# Serialize the audio data and instruction into a JSON formatted string
|
111 |
audio_generation_content = json.dumps({
|
112 |
"audio": audio,
|
113 |
"audio_instruction": audio_instruction
|
114 |
})
|
115 |
-
# Construct the conversation history including the audio generation result and
|
116 |
audio_generation_result = (
|
117 |
new_history
|
118 |
+ [
|
119 |
{
|
120 |
"role": "system",
|
121 |
"content": (
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
)
|
131 |
}
|
132 |
]
|
133 |
)
|
134 |
|
135 |
-
# Use async generator to get descriptive text about the generated audio
|
136 |
async for audio_description in jarvis(
|
137 |
session_id=session_id,
|
138 |
model=selected_model,
|
139 |
history=audio_generation_result,
|
140 |
user_message=input,
|
141 |
-
mode="/no_think", # Use
|
142 |
-
temperature=0.7, # Fixed temperature for audio description generation
|
143 |
-
top_k=20, # Limit token sampling to top 20 tokens
|
144 |
-
min_p=0, # Minimum probability threshold
|
145 |
-
top_p=0.8, # Nucleus sampling threshold
|
146 |
repetition_penalty=1 # No repetition penalty for this step
|
147 |
):
|
148 |
-
# Yield the audio description wrapped in a tool role for UI display
|
149 |
-
yield [{"role": "tool", "content":
|
150 |
return
|
151 |
except Exception:
|
152 |
-
# If audio generation fails,
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
return
|
155 |
|
156 |
-
# Handle image generation command if enabled and input starts with '/image'
|
157 |
if image_gen and lowered_input.startswith("/image"):
|
158 |
# Extract the image generation instruction after the '/image' command prefix and strip whitespace
|
159 |
generate_image_instruction = input[6:].strip()
|
160 |
-
# If no instruction text is provided, yield empty and exit early
|
161 |
if not generate_image_instruction:
|
162 |
yield []
|
163 |
return
|
@@ -165,58 +196,90 @@ async def respond(
|
|
165 |
# Asynchronously create image content based on the instruction using ImageGeneration class
|
166 |
image = await ImageGeneration.create_image(generate_image_instruction)
|
167 |
|
168 |
-
# Serialize the image data and instruction into a JSON formatted string
|
169 |
image_generation_content = json.dumps({
|
170 |
"image": image,
|
171 |
"generate_image_instruction": generate_image_instruction
|
172 |
})
|
173 |
|
174 |
-
# Construct the conversation history including the image generation result and
|
175 |
image_generation_result = (
|
176 |
new_history
|
177 |
+ [
|
178 |
{
|
179 |
"role": "system",
|
180 |
"content": (
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
)
|
190 |
}
|
191 |
]
|
192 |
)
|
193 |
|
194 |
-
# Use async generator to get descriptive text about the generated image
|
195 |
async for image_description in jarvis(
|
196 |
session_id=session_id,
|
197 |
model=selected_model,
|
198 |
history=image_generation_result,
|
199 |
user_message=input,
|
200 |
-
mode="/no_think", # Use
|
201 |
-
temperature=0.7, # Fixed temperature for image description generation
|
202 |
-
top_k=20, # Limit token sampling to top 20 tokens
|
203 |
-
min_p=0, # Minimum probability threshold
|
204 |
-
top_p=0.8, # Nucleus sampling threshold
|
205 |
repetition_penalty=1 # No repetition penalty for this step
|
206 |
):
|
207 |
-
# Yield the image description wrapped in a tool role for UI display
|
208 |
-
yield [{"role": "tool", "content":
|
209 |
return
|
210 |
except Exception:
|
211 |
-
# If image generation fails,
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
return
|
214 |
|
215 |
-
# Handle deep search command if enabled and input starts with '/dp'
|
216 |
if search_gen and lowered_input.startswith("/dp"):
|
217 |
# Extract the search query after the '/dp' command prefix and strip whitespace
|
218 |
search_query = input[3:].strip()
|
219 |
-
# If no search query is provided, yield empty and exit early
|
220 |
if not search_query:
|
221 |
yield []
|
222 |
return
|
@@ -238,15 +301,15 @@ async def respond(
|
|
238 |
{
|
239 |
"role": "system",
|
240 |
"content": (
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
)
|
251 |
}
|
252 |
]
|
@@ -265,20 +328,51 @@ async def respond(
|
|
265 |
top_p=top_p,
|
266 |
repetition_penalty=repetition_penalty
|
267 |
):
|
268 |
-
# Yield the search summary wrapped in a tool role for UI display
|
269 |
-
yield [{"role": "tool", "content":
|
270 |
return
|
271 |
|
272 |
except Exception as e:
|
273 |
-
# If deep search fails,
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
return
|
276 |
|
277 |
-
# For all other inputs that do not match special commands, use the jarvis function to generate a response
|
278 |
async for response in jarvis(
|
279 |
session_id=session_id,
|
280 |
model=selected_model,
|
281 |
-
history=new_history, # Pass the conversation history
|
282 |
user_message=input,
|
283 |
mode=mode, # Use the mode determined by the thinking flag
|
284 |
files=files, # Pass any attached files along with the message
|
@@ -288,5 +382,5 @@ async def respond(
|
|
288 |
top_p=top_p,
|
289 |
repetition_penalty=repetition_penalty
|
290 |
):
|
291 |
-
# Yield each chunk of the response as it is generated
|
292 |
yield response
|
|
|
16 |
import gradio as gr # Import Gradio library for UI and request handling
|
17 |
|
18 |
# Define an asynchronous function 'respond' to process user messages and generate AI responses
|
19 |
+
# This function handles various types of user inputs including text, commands, and file uploads
|
20 |
+
# It supports multiple AI models and generation modes with customizable parameters
|
21 |
async def respond(
|
22 |
message, # Incoming user message, can be a string or a dictionary containing text and files
|
23 |
+
history: List[Any], # List containing conversation history as pairs of user and assistant messages
|
24 |
+
model_label, # Label/key to select the specific AI model from available models configuration
|
25 |
+
temperature, # Sampling temperature parameter controlling randomness of AI response generation (0.0 to 2.0)
|
26 |
+
top_k, # Number of highest probability tokens to keep for sampling during text generation
|
27 |
+
min_p, # Minimum probability threshold for token sampling to filter low probability tokens
|
28 |
+
top_p, # Cumulative probability threshold for nucleus sampling technique
|
29 |
+
repetition_penalty, # Penalty factor to reduce repetitive tokens in generated text output
|
30 |
+
thinking, # Boolean flag indicating if AI should operate in "thinking" mode with deeper reasoning
|
31 |
+
image_gen, # Boolean flag to enable image generation commands using /image prefix
|
32 |
+
audio_gen, # Boolean flag to enable audio generation commands using /audio prefix
|
33 |
+
search_gen, # Boolean flag to enable deep search commands using /dp prefix
|
34 |
request: gr.Request # Gradio request object to access session information such as session hash
|
35 |
):
|
36 |
+
# Select the AI model based on the provided label, fallback to first model if label not found
|
37 |
selected_model = model.get(model_label, list(model.values())[0])
|
38 |
|
39 |
+
# Instantiate SearchTools class to enable deep search capabilities when requested by user
|
40 |
search_tools = SearchTools()
|
41 |
|
42 |
+
# Retrieve session ID from the Gradio request's session hash, generate new UUID if none exists
|
43 |
session_id = request.session_hash or str(uuid.uuid4())
|
44 |
|
45 |
+
# Initialize an empty conversation history list for this session if it does not already exist
|
46 |
if session_id not in session:
|
47 |
session[session_id] = []
|
48 |
|
49 |
# Determine the mode string based on the 'thinking' flag, affects AI response generation behavior
|
50 |
mode = "/think" if thinking else "/no_think"
|
51 |
|
52 |
+
# Initialize variables for storing user input text and any attached files
|
53 |
input = ""
|
54 |
files = None
|
55 |
|
56 |
+
# Check if the incoming message is a dictionary which may contain both text and file attachments
|
57 |
if isinstance(message, dict):
|
58 |
# Extract the text content from the message dictionary, default to empty string if missing
|
59 |
input = message.get("text", "")
|
60 |
+
# Extract the first file from the files list if present, otherwise set files to None
|
61 |
files = message.get("files")[0] if message.get("files") else None
|
62 |
else:
|
63 |
+
# If the message is a simple string, assign it directly to input variable
|
64 |
input = message
|
65 |
|
66 |
# Strip leading and trailing whitespace from the input for clean processing
|
|
|
68 |
# Convert the stripped input to lowercase for case-insensitive command detection
|
69 |
lowered_input = stripped_input.lower()
|
70 |
|
71 |
+
# If the input is empty after stripping whitespace, yield an empty list and exit function early
|
72 |
if not stripped_input:
|
73 |
yield []
|
74 |
return
|
|
|
78 |
yield []
|
79 |
return
|
80 |
|
81 |
+
# Convert conversation history from tuples style to messages style format for AI model consumption
|
82 |
+
# Transform list of [user_msg, assistant_msg] pairs into flat list of role-content dictionaries
|
|
|
83 |
new_history = []
|
84 |
for entry in history:
|
85 |
# Ensure the entry is a list with exactly two elements: user message and assistant message
|
86 |
if isinstance(entry, list) and len(entry) == 2:
|
87 |
user_msg, assistant_msg = entry
|
88 |
+
# Append the user message with role 'user' to the new history if message is not None
|
89 |
if user_msg is not None:
|
90 |
new_history.append({"role": "user", "content": user_msg})
|
91 |
# Append the assistant message with role 'assistant' if it exists and is not None
|
|
|
95 |
# Update the global session dictionary with the newly formatted conversation history for this session
|
96 |
session[session_id] = new_history
|
97 |
|
98 |
+
# Handle audio generation command if enabled and input starts with '/audio' prefix
|
99 |
if audio_gen and lowered_input.startswith("/audio"):
|
100 |
# Extract the audio instruction text after the '/audio' command prefix and strip whitespace
|
101 |
audio_instruction = input[6:].strip()
|
102 |
+
# If no instruction text is provided after the command, yield empty and exit early
|
103 |
if not audio_instruction:
|
104 |
yield []
|
105 |
return
|
106 |
try:
|
107 |
# Asynchronously create audio content based on the instruction using AudioGeneration class
|
108 |
audio = await AudioGeneration.create_audio(audio_instruction)
|
109 |
+
# Serialize the audio data and instruction into a JSON formatted string for processing
|
110 |
audio_generation_content = json.dumps({
|
111 |
"audio": audio,
|
112 |
"audio_instruction": audio_instruction
|
113 |
})
|
114 |
+
# Construct the conversation history including the audio generation result and formatting instructions
|
115 |
audio_generation_result = (
|
116 |
new_history
|
117 |
+ [
|
118 |
{
|
119 |
"role": "system",
|
120 |
"content": (
|
121 |
+
"Audio generation result:\n\n" + audio_generation_content + "\n\n\n"
|
122 |
+
"Show the audio using the following HTML audio tag format, where '{audio_link}' is the URL of the generated audio:\n\n"
|
123 |
+
"<audio controls src='{audio_link}' style='width:100%; max-width:100%;'></audio>\n\n"
|
124 |
+
"Please replace '{audio_link}' with the actual audio URL provided in the context.\n\n"
|
125 |
+
"Then, describe the generated audio based on the above information.\n\n\n"
|
126 |
+
"Use the same language as the previous user input or user request.\n"
|
127 |
+
"For example, if the previous user input or user request is in Indonesian, explain in Indonesian.\n"
|
128 |
+
"If it is in English, explain in English. This also applies to other languages.\n\n\n"
|
129 |
)
|
130 |
}
|
131 |
]
|
132 |
)
|
133 |
|
134 |
+
# Use async generator to get descriptive text about the generated audio from AI
|
135 |
async for audio_description in jarvis(
|
136 |
session_id=session_id,
|
137 |
model=selected_model,
|
138 |
history=audio_generation_result,
|
139 |
user_message=input,
|
140 |
+
mode="/no_think", # Use non-reasoning mode to avoid extra processing overhead
|
141 |
+
temperature=0.7, # Fixed temperature for consistent audio description generation
|
142 |
+
top_k=20, # Limit token sampling to top 20 most probable tokens
|
143 |
+
min_p=0, # Minimum probability threshold set to zero
|
144 |
+
top_p=0.8, # Nucleus sampling threshold for quality control
|
145 |
repetition_penalty=1 # No repetition penalty for this step
|
146 |
):
|
147 |
+
# Yield the audio description wrapped in a tool role for proper UI display
|
148 |
+
yield [{"role": "tool", "content": audio_description}]
|
149 |
return
|
150 |
except Exception:
|
151 |
+
# If audio generation fails, let AI generate a contextual error message
|
152 |
+
generation_failed = (
|
153 |
+
new_history
|
154 |
+
+ [
|
155 |
+
{
|
156 |
+
"role": "system",
|
157 |
+
"content": (
|
158 |
+
"Audio generation failed for the user's request. The user tried to generate audio with the instruction: '"
|
159 |
+
+ audio_instruction + "'\n\n\n"
|
160 |
+
"Please explain to the user that audio generation failed and suggest they wait 15 seconds before trying again.\n"
|
161 |
+
"Be helpful and empathetic in your response.\n\n\n"
|
162 |
+
"Use the same language as the previous user input or user request.\n"
|
163 |
+
"For example, if the previous user input or user request is in Indonesian, explain in Indonesian.\n"
|
164 |
+
"If it is in English, explain in English. This also applies to other languages.\n\n\n"
|
165 |
+
)
|
166 |
+
}
|
167 |
+
]
|
168 |
+
)
|
169 |
+
|
170 |
+
# Use AI to generate a contextual error message
|
171 |
+
async for error_response in jarvis(
|
172 |
+
session_id=session_id,
|
173 |
+
model=selected_model,
|
174 |
+
history=generation_failed,
|
175 |
+
user_message=input,
|
176 |
+
mode="/no_think", # Use non-reasoning mode for error handling
|
177 |
+
temperature=0.7, # Fixed temperature for more consistent error messages
|
178 |
+
top_k=20, # Limit token sampling
|
179 |
+
min_p=0, # Minimum probability threshold
|
180 |
+
top_p=0.8, # Nucleus sampling threshold
|
181 |
+
repetition_penalty=1 # No repetition penalty
|
182 |
+
):
|
183 |
+
# Yield the AI-generated error response wrapped in tool role
|
184 |
+
yield [{"role": "tool", "content": error_response}]
|
185 |
return
|
186 |
|
187 |
+
# Handle image generation command if enabled and input starts with '/image' prefix
|
188 |
if image_gen and lowered_input.startswith("/image"):
|
189 |
# Extract the image generation instruction after the '/image' command prefix and strip whitespace
|
190 |
generate_image_instruction = input[6:].strip()
|
191 |
+
# If no instruction text is provided after the command, yield empty and exit early
|
192 |
if not generate_image_instruction:
|
193 |
yield []
|
194 |
return
|
|
|
196 |
# Asynchronously create image content based on the instruction using ImageGeneration class
|
197 |
image = await ImageGeneration.create_image(generate_image_instruction)
|
198 |
|
199 |
+
# Serialize the image data and instruction into a JSON formatted string for processing
|
200 |
image_generation_content = json.dumps({
|
201 |
"image": image,
|
202 |
"generate_image_instruction": generate_image_instruction
|
203 |
})
|
204 |
|
205 |
+
# Construct the conversation history including the image generation result and formatting instructions
|
206 |
image_generation_result = (
|
207 |
new_history
|
208 |
+ [
|
209 |
{
|
210 |
"role": "system",
|
211 |
"content": (
|
212 |
+
"Image generation result:\n\n" + image_generation_content + "\n\n\n"
|
213 |
+
"Show the generated image using the following markdown syntax format, where '{image_link}' is the URL of the image:\n\n"
|
214 |
+
"\n\n"
|
215 |
+
"Please replace '{image_link}' with the actual image URL provided in the context.\n\n"
|
216 |
+
"Then, describe the generated image based on the above information.\n\n\n"
|
217 |
+
"Use the same language as the previous user input or user request.\n"
|
218 |
+
"For example, if the previous user input or user request is in Indonesian, explain in Indonesian.\n"
|
219 |
+
"If it is in English, explain in English. This also applies to other languages.\n\n\n"
|
220 |
)
|
221 |
}
|
222 |
]
|
223 |
)
|
224 |
|
225 |
+
# Use async generator to get descriptive text about the generated image from AI
|
226 |
async for image_description in jarvis(
|
227 |
session_id=session_id,
|
228 |
model=selected_model,
|
229 |
history=image_generation_result,
|
230 |
user_message=input,
|
231 |
+
mode="/no_think", # Use non-reasoning mode to avoid extra processing overhead
|
232 |
+
temperature=0.7, # Fixed temperature for consistent image description generation
|
233 |
+
top_k=20, # Limit token sampling to top 20 most probable tokens
|
234 |
+
min_p=0, # Minimum probability threshold set to zero
|
235 |
+
top_p=0.8, # Nucleus sampling threshold for quality control
|
236 |
repetition_penalty=1 # No repetition penalty for this step
|
237 |
):
|
238 |
+
# Yield the image description wrapped in a tool role for proper UI display
|
239 |
+
yield [{"role": "tool", "content": image_description}]
|
240 |
return
|
241 |
except Exception:
|
242 |
+
# If image generation fails, let AI generate a contextual error message
|
243 |
+
generation_failed = (
|
244 |
+
new_history
|
245 |
+
+ [
|
246 |
+
{
|
247 |
+
"role": "system",
|
248 |
+
"content": (
|
249 |
+
"Image generation failed for the user's request. The user tried to generate an image with the instruction: '"
|
250 |
+
+ generate_image_instruction + "'\n\n\n"
|
251 |
+
"Please explain to the user that image generation failed and suggest they wait 15 seconds before trying again.\n"
|
252 |
+
"Be helpful and empathetic in your response.\n\n\n"
|
253 |
+
"Use the same language as the previous user input or user request.\n"
|
254 |
+
"For example, if the previous user input or user request is in Indonesian, explain in Indonesian.\n"
|
255 |
+
"If it is in English, explain in English. This also applies to other languages.\n\n\n"
|
256 |
+
)
|
257 |
+
}
|
258 |
+
]
|
259 |
+
)
|
260 |
+
|
261 |
+
# Use AI to generate a contextual error message
|
262 |
+
async for error_response in jarvis(
|
263 |
+
session_id=session_id,
|
264 |
+
model=selected_model,
|
265 |
+
history=generation_failed,
|
266 |
+
user_message=input,
|
267 |
+
mode="/no_think", # Use non-reasoning mode for error handling
|
268 |
+
temperature=0.7, # Fixed temperature for more consistent error messages
|
269 |
+
top_k=20, # Limit token sampling
|
270 |
+
min_p=0, # Minimum probability threshold
|
271 |
+
top_p=0.8, # Nucleus sampling threshold
|
272 |
+
repetition_penalty=1 # No repetition penalty
|
273 |
+
):
|
274 |
+
# Yield the AI-generated error response wrapped in tool role
|
275 |
+
yield [{"role": "tool", "content": error_response}]
|
276 |
return
|
277 |
|
278 |
+
# Handle deep search command if enabled and input starts with '/dp' prefix
|
279 |
if search_gen and lowered_input.startswith("/dp"):
|
280 |
# Extract the search query after the '/dp' command prefix and strip whitespace
|
281 |
search_query = input[3:].strip()
|
282 |
+
# If no search query is provided after the command, yield empty and exit early
|
283 |
if not search_query:
|
284 |
yield []
|
285 |
return
|
|
|
301 |
{
|
302 |
"role": "system",
|
303 |
"content": (
|
304 |
+
"Deep search results for query: '" + search_query + "':\n\n\n" + search_content + "\n\n\n"
|
305 |
+
"Please analyze these search results and provide a comprehensive summary of the information.\n"
|
306 |
+
"Identify the most relevant information related to the query.\n"
|
307 |
+
"Format your response in a clear, structured way with appropriate headings and bullet points if needed.\n"
|
308 |
+
"If the search results don't provide sufficient information, acknowledge this limitation.\n"
|
309 |
+
"Please provide links or URLs from each of your search results.\n\n\n"
|
310 |
+
"Use the same language as the previous user input or user request.\n"
|
311 |
+
"For example, if the previous user input or user request is in Indonesian, explain in Indonesian.\n"
|
312 |
+
"If it is in English, explain in English. This also applies to other languages.\n\n\n"
|
313 |
)
|
314 |
}
|
315 |
]
|
|
|
328 |
top_p=top_p,
|
329 |
repetition_penalty=repetition_penalty
|
330 |
):
|
331 |
+
# Yield the search summary wrapped in a tool role for proper UI display
|
332 |
+
yield [{"role": "tool", "content": search_response}]
|
333 |
return
|
334 |
|
335 |
except Exception as e:
|
336 |
+
# If deep search fails, let AI generate a contextual error message
|
337 |
+
generation_failed = (
|
338 |
+
new_history
|
339 |
+
+ [
|
340 |
+
{
|
341 |
+
"role": "system",
|
342 |
+
"content": (
|
343 |
+
"Deep search failed for the user's query: '" + search_query + "'\n\n\n"
|
344 |
+
"Please explain to the user that the search operation failed and suggest they try again later.\n"
|
345 |
+
"Be helpful and empathetic in your response. You can also suggest alternative approaches or workarounds.\n\n\n"
|
346 |
+
"Use the same language as the previous user input or user request.\n"
|
347 |
+
"For example, if the previous user input or user request is in Indonesian, explain in Indonesian.\n"
|
348 |
+
"If it is in English, explain in English. This also applies to other languages.\n\n\n"
|
349 |
+
)
|
350 |
+
}
|
351 |
+
]
|
352 |
+
)
|
353 |
+
|
354 |
+
# Use AI to generate a contextual error message
|
355 |
+
async for error_response in jarvis(
|
356 |
+
session_id=session_id,
|
357 |
+
model=selected_model,
|
358 |
+
history=generation_failed,
|
359 |
+
user_message=input,
|
360 |
+
mode="/no_think", # Use non-reasoning mode for error handling
|
361 |
+
temperature=0.7, # Fixed temperature for more consistent error messages
|
362 |
+
top_k=20, # Limit token sampling
|
363 |
+
min_p=0, # Minimum probability threshold
|
364 |
+
top_p=0.8, # Nucleus sampling threshold
|
365 |
+
repetition_penalty=1 # No repetition penalty
|
366 |
+
):
|
367 |
+
# Yield the AI-generated error response wrapped in tool role
|
368 |
+
yield [{"role": "tool", "content": error_response}]
|
369 |
return
|
370 |
|
371 |
+
# For all other inputs that do not match special commands, use the jarvis function to generate a normal response
|
372 |
async for response in jarvis(
|
373 |
session_id=session_id,
|
374 |
model=selected_model,
|
375 |
+
history=new_history, # Pass the conversation history
|
376 |
user_message=input,
|
377 |
mode=mode, # Use the mode determined by the thinking flag
|
378 |
files=files, # Pass any attached files along with the message
|
|
|
382 |
top_p=top_p,
|
383 |
repetition_penalty=repetition_penalty
|
384 |
):
|
385 |
+
# Yield each chunk of the response as it is generated by the AI model
|
386 |
yield response
|
src/ui/interface.py
CHANGED
@@ -176,7 +176,8 @@ def ui():
|
|
176 |
multimodal=False, # Disable support for multimodal inputs such as images or audio files
|
177 |
fill_height=True, # Duplicate from Blocks to Chat Interface
|
178 |
fill_width=True, # Duplicate from Blocks to Chat Interface
|
179 |
-
head=meta_tags
|
|
|
180 |
)
|
181 |
# Return the complete Gradio app object for launching or embedding
|
182 |
return app
|
|
|
176 |
multimodal=False, # Disable support for multimodal inputs such as images or audio files
|
177 |
fill_height=True, # Duplicate from Blocks to Chat Interface
|
178 |
fill_width=True, # Duplicate from Blocks to Chat Interface
|
179 |
+
head=meta_tags, # Duplicate from Blocks to Chat Interface
|
180 |
+
show_progress="full" # Progress animation
|
181 |
)
|
182 |
# Return the complete Gradio app object for launching or embedding
|
183 |
return app
|