Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from peft import PeftModel
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
@@ -5,19 +6,41 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 5 |
# Load tokenizer
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
|
| 7 |
|
| 8 |
-
# Load base model on CPU
|
| 9 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# Load fine-tuned
|
| 12 |
model = PeftModel.from_pretrained(base_model, "hackergeek98/gemma-finetuned")
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from peft import PeftModel
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 6 |
# Load tokenizer
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
|
| 8 |
|
| 9 |
+
# Load base model on CPU with optimizations
|
| 10 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
"google/gemma-3-1b-pt",
|
| 12 |
+
torch_dtype=torch.bfloat16, # Efficient memory usage
|
| 13 |
+
low_cpu_mem_usage=True
|
| 14 |
+
)
|
| 15 |
|
| 16 |
+
# Load fine-tuned model
|
| 17 |
model = PeftModel.from_pretrained(base_model, "hackergeek98/gemma-finetuned")
|
| 18 |
+
model = model.to("cpu") # Ensure it runs on CPU
|
| 19 |
|
| 20 |
+
# Chatbot function
|
| 21 |
+
def chat(message, history=[]):
|
| 22 |
+
messages = [{"role": "user", "content": message}]
|
| 23 |
+
|
| 24 |
+
input_ids = tokenizer(message, return_tensors="pt").input_ids.to("cpu")
|
| 25 |
|
| 26 |
+
with torch.no_grad(): # Disable gradient calculations for efficiency
|
| 27 |
+
output_ids = model.generate(input_ids, max_length=100)
|
| 28 |
+
|
| 29 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 30 |
+
|
| 31 |
+
history.append((message, response)) # Store conversation history
|
| 32 |
+
return history, history
|
| 33 |
|
| 34 |
+
# Gradio UI
|
| 35 |
+
demo = gr.ChatInterface(
|
| 36 |
+
chat,
|
| 37 |
+
chatbot=gr.Chatbot(height=400),
|
| 38 |
+
additional_inputs=[
|
| 39 |
+
gr.Textbox(value="Welcome to the chatbot!", label="System message")
|
| 40 |
+
],
|
| 41 |
+
title="Fine-Tuned Gemma Chatbot",
|
| 42 |
+
description="This chatbot is fine-tuned on Persian text using Gemma.",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
demo.launch()
|