File size: 4,978 Bytes
6d56d5a
 
6734637
 
6d56d5a
6734637
 
 
 
 
6d56d5a
f6e532b
 
 
 
6734637
 
 
 
 
 
6d56d5a
 
6734637
 
 
 
 
 
 
 
 
 
 
 
f6e532b
 
 
 
6734637
 
 
 
 
 
f6e532b
6d56d5a
 
6734637
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e532b
6734637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e532b
6734637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e532b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6734637
 
 
 
f6e532b
6734637
 
 
 
 
 
 
f6e532b
6734637
 
f6e532b
6734637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e532b
6734637
 
 
 
 
 
 
f6e532b
6734637
 
 
 
 
 
 
 
 
 
 
 
f6e532b
 
6734637
 
 
 
 
 
 
 
f6e532b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import random

import gradio as gr
import numpy as np
import torch

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use
model_repo_id = "CompVis/stable-diffusion-v1-4"
model_dropdown = ['stabilityai/sdxl-turbo', 'CompVis/stable-diffusion-v1-4' ]



if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    randomize_seed,
    width,
    height,
    model_repo_id=model_repo_id,
    seed=42,
    guidance_scale=7,
    num_inference_steps=20,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    pipe = pipe.to(device)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed



examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image SemaSci Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
#            model_repo_id = gr.Text(
#                label="Model Id",
#                max_lines=1,
#                placeholder="Choose model",
#                visible=True,
#                value=model_repo_id,
#            )
            model_repo_id = gr.Dropdown(
                label="Model Id",
                choices=model_dropdown,
                info="Choose model",
                visible=True,
                allow_custom_value=True,
                value=model_repo_id,
            )            
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            randomize_seed,
            width,
            height,
            model_repo_id,
            seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()