Spaces:
Sleeping
Sleeping
File size: 7,094 Bytes
ef3e88c 6d56d5a 6734637 6d56d5a 6734637 9359b91 ef3e88c 6734637 6d56d5a 66c7a88 f6e532b dba807a ef3e88c dba807a f6e532b 6734637 6d56d5a 6734637 ef3e88c 6734637 dba807a 6734637 66c7a88 f6e532b 24904ba 6734637 24904ba 6734637 f6e532b ef3e88c 6734637 9359b91 6734637 dba807a 6734637 dba807a 6734637 f6e532b 6734637 f6e532b 6734637 24904ba 6734637 a5981be 6734637 a5981be 6734637 a5981be 6734637 a5981be 6734637 dba807a 6734637 f6e532b 6734637 9359b91 6734637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import random
import gradio as gr
import numpy as np
import torch
# import spaces #[uncomment to use ZeroGPU]
from diffusers import StableDiffusionPipeline
from peft import LoraConfig, PeftModel
device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
# model_repo_id = "CompVis/stable-diffusion-v1-4"
# model_dropdown = ["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4"]
models = [
"gstranger/kawaiicat-lora-1.4",
"CompVis/stable-diffusion-v1-4",
"stabilityai/sdxl-turbo",
"sd-legacy/stable-diffusion-v1-5",
]
model_dropdown = [
"stabilityai/sdxl-turbo",
"CompVis/stable-diffusion-v1-4",
"sd-legacy/stable-diffusion-v1-5",
]
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
MODEL_NAME = "CompVis/stable-diffusion-v1-4"
CKPT_DIR = "sd-14-lora-1000"
def get_lora_sd_pipeline(
ckpt_dir=CKPT_DIR,
base_model_name_or_path=None,
dtype=torch.float16,
device="cuda",
adapter_name="default",
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionPipeline.from_pretrained(
base_model_name_or_path, torch_dtype=dtype
).to(device)
pipe.unet = PeftModel.from_pretrained(
pipe.unet, unet_sub_dir, adapter_name=adapter_name
)
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model_id,
prompt,
negative_prompt,
randomize_seed,
width,
height,
# model_repo_id=model_repo_id,
seed=42,
guidance_scale=7,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True),
lora_scale=1,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if model_id == "gstranger/kawaiicat-lora-1.4":
# добавляем lora
pipe = get_lora_sd_pipeline(
os.path.join(CKPT_DIR, ""), adapter_name="sd-14-lora", dtype=torch_dtype
).to(device)
pipe.safety_checker = None
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
else:
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
requires_safety_checker=False,
safety_checker=None,
)
pipe = pipe.to(device)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lora_scale},
).images[0]
return image, seed
examples = [
"kawaiicat. The cat is sitting. The cat's tail is curled up at the end. The cat is pleased and is enjoying its time.",
"kawaiicat. The cat is sitting upright. The cat is eating some noodles with the chopsticks from a green bowl, which it's holding in his hands.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image kawaiicat Stickers")
with gr.Row():
# Dropdown to select the model from Hugging Face
model_id = gr.Dropdown(
label="Model",
choices=models,
value=models[0], # Default model
)
lora_scale = gr.Slider(
label="LORA Scale",
minimum=0,
maximum=1,
step=0.01,
value=1,
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=10.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id,
prompt,
negative_prompt,
randomize_seed,
width,
height,
seed,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|