File size: 5,793 Bytes
6d56d5a
 
6734637
 
6d56d5a
6734637
 
 
 
 
6d56d5a
f6e532b
dba807a
f6e532b
dba807a
 
 
 
 
f6e532b
6734637
 
 
 
 
 
6d56d5a
 
6734637
 
 
 
 
 
 
dba807a
6734637
 
 
 
 
f6e532b
 
 
 
6734637
 
 
 
 
 
f6e532b
dba807a
 
 
 
 
 
6d56d5a
6734637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba807a
 
6734637
 
 
 
 
 
 
 
 
 
 
dba807a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6734637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba807a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6734637
 
 
 
f6e532b
6734637
 
 
 
 
 
 
f6e532b
6734637
 
f6e532b
6734637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e532b
6734637
 
 
 
 
 
 
f6e532b
6734637
 
 
 
 
 
 
dba807a
6734637
 
 
 
 
f6e532b
 
6734637
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import random

import gradio as gr
import numpy as np
import torch

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use
model_repo_id = "CompVis/stable-diffusion-v1-4"
model_dropdown = ["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4"]

models = [
    "gstranger/kawaiicat-lora-1.4",
    "CompVis/stable-diffusion-v1-4",
    "stabilityai/sdxl-turbo",
]


if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    model_id,
    prompt,
    negative_prompt,
    randomize_seed,
    width,
    height,
    model_repo_id=model_repo_id,
    seed=42,
    guidance_scale=7,
    num_inference_steps=20,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    pipe = DiffusionPipeline.from_pretrained(
        model_id,
        torch_dtype=torch_dtype,
        requires_safety_checker=False,
        safety_checker=None,
    )
    pipe = pipe.to(device)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "kawaiicat. The cat is sitting. The cat's tail is curled up at the end. The cat is pleased and is enjoying its time.",
    "kawaiicat. The cat is sitting upright. The cat is eating some noodles with the chopsticks from a green bowl, which it's holding in his hands.",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image kawaiicat Stickers")
        with gr.Row():
            # Dropdown to select the model from Hugging Face
            model_id = gr.Dropdown(
                label="Model",
                choices=models,
                value=models[0],  # Default model
            )

        lora_scale = gr.Slider(
            label="LORA Scale",
            minimum=0,
            maximum=1,
            step=0.01,
            value=1,
        )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            #            model_repo_id = gr.Text(
            #                label="Model Id",
            #                max_lines=1,
            #                placeholder="Choose model",
            #                visible=True,
            #                value=model_repo_id,
            #            )
            # model_id = gr.Dropdown(
            #     label="Model Id",
            #     choices=models,
            #     info="Choose model",
            #     visible=True,
            #     allow_custom_value=True,
            #     value=models,
            # )

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_id,
            prompt,
            negative_prompt,
            randomize_seed,
            width,
            height,
            model_repo_id,
            seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()