File size: 6,725 Bytes
c02e89e
 
37a99cb
c02e89e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c7d05e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02e89e
 
0c7d05e
 
 
 
 
 
 
 
 
c02e89e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c7d05e
 
 
 
 
 
 
 
37a99cb
c02e89e
0c7d05e
c02e89e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c7d05e
c02e89e
0c7d05e
c02e89e
 
 
 
 
0c7d05e
c02e89e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a99cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import re
import unicodedata

import tiktoken
from transformers import AutoTokenizer

from mappings import MODEL_MAP, TOKENIZER_INFO


def get_token_type(token_text):
    if re.match(r"^\s+$", token_text):
        return "whitespace"
    elif re.match(r"^[a-zA-Z]+$", token_text):
        return "word"
    elif re.match(r"^\d+$", token_text):
        return "number"
    elif re.match(r"^[^\w\s]+$", token_text):
        return "punctuation"
    elif token_text.startswith("<") and token_text.endswith(">"):
        return "special"
    else:
        return "mixed"


def is_subword(token_text, model, is_first):
    if not token_text or token_text.isspace():
        return False

    if token_text.startswith("<") and token_text.endswith(">"):
        return False  # special token

    if model in {
        "llama-2",
        "llama-3",
        "gemma-2",
        "bloom",
        "aya-expanse",
        "comma",
    }:
        return (
            not (token_text.startswith("▁") or token_text.startswith("Ġ"))
            and not is_first
        )
    elif model == "bert":
        return token_text.startswith("##")
    elif model in {"qwen3", "qwen2.5"}:
        return (
            not (token_text.startswith("▁") or token_text.startswith("Ġ"))
            and not is_first
        )
    elif model in {"gpt-4", "gpt-2", "byt5"}:
        return not token_text.startswith(" ") and not is_first
    else:
        return not is_first


def tokenize_with_tiktoken(text, model):
    encoding = "cl100k_base" if model == "gpt-4" else "gpt2"
    enc = tiktoken.get_encoding(encoding)
    tokens = enc.encode(text)

    token_data = []
    current_pos = 0

    for i, token_id in enumerate(tokens):
        token_text = enc.decode([token_id])
        token_type = get_token_type(token_text)
        subword = is_subword(token_text, model, i == 0)

        token_data.append(
            {
                "text": token_text,
                "id": int(token_id),
                "type": token_type,
                "is_subword": subword,
                "bytes": len(token_text.encode("utf-8")),
                "position": i,
            }
        )
        current_pos += len(token_text)

    return {
        "model": TOKENIZER_INFO[model]["name"],
        "token_count": len(tokens),
        "tokens": token_data,
        "compression_ratio": len(text) / len(tokens) if tokens else 0,
        "encoding": TOKENIZER_INFO[model]["encoding"],
        "vocab_size": TOKENIZER_INFO[model]["vocab_size"],
    }


def tokenize_with_hf(text, model):
    try:
        model_name = MODEL_MAP.get(model, "gpt2")

        # Get token from environment
        hf_token = os.getenv("HF_TOKEN")
        if not hf_token:
            return {
                "model": TOKENIZER_INFO[model]["name"],
                "token_count": 0,
                "tokens": [],
                "error": "HF_TOKEN not found in environment. Please add your HuggingFace token to Space secrets.",
            }

        print(f"DEBUG: Loading model {model_name} with token")
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, token=hf_token, trust_remote_code=True
        )
        token_data = []
        encoding = tokenizer(
            text,
            return_offsets_mapping=False,
            return_tensors=None,
            add_special_tokens=True,
        )
        token_ids = encoding["input_ids"]
        tokens = tokenizer.convert_ids_to_tokens(token_ids)
        # print(tokenizer.backend_tokenizer.normalizer.normalize_str("Héllò hôw are ü?"))

        for i, (token_id, token_text) in enumerate(zip(token_ids, tokens)):
            token_type = get_token_type(token_text)
            subword = is_subword(token_text, model, i == 0)

            token_data.append(
                {
                    "text": token_text,
                    "id": int(token_id),
                    "type": token_type,
                    "is_subword": subword,
                    "bytes": len(token_text.encode("utf-8")),
                    "position": i,
                }
            )

        return {
            "model": TOKENIZER_INFO[model]["name"],
            "token_count": len(token_ids),
            "tokens": token_data,
            "compression_ratio": len(text) / len(token_ids) if token_ids else 0,
            "encoding": TOKENIZER_INFO[model]["encoding"],
            "vocab_size": TOKENIZER_INFO[model]["vocab_size"],
        }
    except Exception as e:
        error_msg = str(e)
        print(f"DEBUG: Error: {error_msg}")

        # Provide helpful error messages
        if "gated repo" in error_msg.lower():
            error_msg = f"Model is gated. Request access at https://huggingface.co/{model_name} and ensure HF_TOKEN is set."
        elif "401" in error_msg:
            error_msg = "Authentication failed. Check your HF_TOKEN in Space secrets."
        elif "not found" in error_msg.lower():
            error_msg = (
                f"Model {model_name} not found. It may have been moved or renamed."
            )

        return {
            "model": TOKENIZER_INFO[model]["name"],
            "token_count": 0,
            "tokens": [],
            "compression_ratio": 0,
            "encoding": "Error",
            "vocab_size": 0,
            "error": error_msg,
        }


def normalize_text(text, method):
    """Apply normalization method to text"""
    if method == "none":
        return text
    elif method == "lowercase":
        return text.lower()
    elif method == "nfc":
        return unicodedata.normalize("NFC", text)
    elif method == "nfd":
        return unicodedata.normalize("NFD", text)
    elif method == "nfkc":
        return unicodedata.normalize("NFKC", text)
    elif method == "nfkd":
        return unicodedata.normalize("NFKD", text)
    elif method == "strip_accents":
        return "".join(
            c
            for c in unicodedata.normalize("NFD", text)
            if unicodedata.category(c) != "Mn"
        )
    elif method == "strip_punctuation":
        return re.sub(r"[^\w\s]", "", text)
    elif method == "whitespace_normalize":
        return " ".join(text.split())
    return text


def get_normalization_methods():
    """Return available normalization methods"""
    return [
        ("none", "No normalization"),
        ("lowercase", "Lowercase"),
        ("nfc", "Unicode NFC (Canonical)"),
        ("nfd", "Unicode NFD (Decomposed)"),
        ("nfkc", "Unicode NFKC (Compatible)"),
        ("nfkd", "Unicode NFKD (Compatible Decomposed)"),
        ("strip_accents", "Remove Accents"),
        ("strip_punctuation", "Remove Punctuation"),
        ("whitespace_normalize", "Normalize Whitespace"),
    ]