Spaces:
Running
Running
File size: 4,449 Bytes
c02e89e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
import re
import tiktoken
from transformers import AutoTokenizer
from mappings import MODEL_MAP, TOKENIZER_INFO
def get_token_type(token_text):
if re.match(r"^\s+$", token_text):
return "whitespace"
elif re.match(r"^[a-zA-Z]+$", token_text):
return "word"
elif re.match(r"^\d+$", token_text):
return "number"
elif re.match(r"^[^\w\s]+$", token_text):
return "punctuation"
elif token_text.startswith("<") and token_text.endswith(">"):
return "special"
else:
return "mixed"
def is_subword(token_text, model, is_first):
if model in ["llama-2", "llama-3", "qwen3"]:
return not token_text.startswith("▁") and not is_first
elif model == "bert":
return token_text.startswith("##")
else: # BPE models
return not token_text.startswith(" ") and not is_first and len(token_text) > 0
def tokenize_with_tiktoken(text, model):
encoding = "cl100k_base" if model == "gpt-4" else "gpt2"
enc = tiktoken.get_encoding(encoding)
tokens = enc.encode(text)
token_data = []
current_pos = 0
for i, token_id in enumerate(tokens):
token_text = enc.decode([token_id])
token_type = get_token_type(token_text)
subword = is_subword(token_text, model, i == 0)
token_data.append(
{
"text": token_text,
"id": int(token_id),
"type": token_type,
"is_subword": subword,
"bytes": len(token_text.encode("utf-8")),
"position": i,
}
)
current_pos += len(token_text)
return {
"model": TOKENIZER_INFO[model]["name"],
"token_count": len(tokens),
"tokens": token_data,
"compression_ratio": len(text) / len(tokens) if tokens else 0,
"encoding": TOKENIZER_INFO[model]["encoding"],
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
}
def tokenize_with_hf(text, model):
try:
model_name = MODEL_MAP.get(model, "gpt2")
# Get token from environment
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
return {
"model": TOKENIZER_INFO[model]["name"],
"token_count": 0,
"tokens": [],
"error": "HF_TOKEN not found in environment. Please add your HuggingFace token to Space secrets.",
}
print(f"DEBUG: Loading model {model_name} with token")
tokenizer = AutoTokenizer.from_pretrained(
model_name, token=hf_token, trust_remote_code=True
)
tokens = tokenizer.encode(text)
token_data = []
for i, token_id in enumerate(tokens):
token_text = tokenizer.decode([token_id], skip_special_tokens=False)
token_type = get_token_type(token_text)
subword = is_subword(token_text, model, i == 0)
token_data.append(
{
"text": token_text,
"id": int(token_id),
"type": token_type,
"is_subword": subword,
"bytes": len(token_text.encode("utf-8")),
"position": i,
}
)
return {
"model": TOKENIZER_INFO[model]["name"],
"token_count": len(tokens),
"tokens": token_data,
"compression_ratio": len(text) / len(tokens) if tokens else 0,
"encoding": TOKENIZER_INFO[model]["encoding"],
"vocab_size": TOKENIZER_INFO[model]["vocab_size"],
}
except Exception as e:
error_msg = str(e)
# Provide helpful error messages
if "gated repo" in error_msg.lower():
error_msg = f"Model is gated. Request access at https://huggingface.co/{model_name} and ensure HF_TOKEN is set."
elif "401" in error_msg:
error_msg = "Authentication failed. Check your HF_TOKEN in Space secrets."
elif "not found" in error_msg.lower():
error_msg = (
f"Model {model_name} not found. It may have been moved or renamed."
)
return {
"model": TOKENIZER_INFO[model]["name"],
"token_count": 0,
"tokens": [],
"compression_ratio": 0,
"encoding": "Error",
"vocab_size": 0,
"error": error_msg,
}
|