Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- README.md +7 -7
- data.py +13 -0
- requirements.txt +2 -0
- run.ipynb +1 -0
- run.py +21 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.39.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: plot_guide_filters_main
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
+
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 4.39.0
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
+
hf_oauth: true
|
12 |
---
|
|
|
|
data.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
|
6 |
+
now = datetime.now()
|
7 |
+
|
8 |
+
df = pd.DataFrame({
|
9 |
+
'time': [now - timedelta(minutes=5*i) for i in range(25)],
|
10 |
+
'price': np.random.randint(100, 1000, 25),
|
11 |
+
'origin': [random.choice(["DFW", "DAL", "HOU"]) for _ in range(25)],
|
12 |
+
'destination': [random.choice(["JFK", "LGA", "EWR"]) for _ in range(25)],
|
13 |
+
})
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
|
run.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: plot_guide_filters"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/plot_guide_filters/data.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from data import df\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " origin = gr.Dropdown([\"All\", \"DFW\", \"DAL\", \"HOU\"], value=\"All\", label=\"Origin\")\n", " destination = gr.Dropdown([\"All\", \"JFK\", \"LGA\", \"EWR\"], value=\"All\", label=\"Destination\")\n", " max_price = gr.Slider(0, 1000, value=1000, label=\"Max Price\")\n", "\n", " def filtered_data(origin, destination, max_price):\n", " _df = df[df[\"price\"] <= max_price]\n", " if origin != \"All\":\n", " _df = _df[_df[\"origin\"] == origin]\n", " if destination != \"All\":\n", " _df = _df[_df[\"destination\"] == destination]\n", " return _df\n", "\n", " gr.ScatterPlot(filtered_data, x=\"time\", y=\"price\", inputs=[origin, destination, max_price])\n", " \n", "if __name__ == \"__main__\":\n", " demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from data import df
|
3 |
+
|
4 |
+
with gr.Blocks() as demo:
|
5 |
+
with gr.Row():
|
6 |
+
origin = gr.Dropdown(["All", "DFW", "DAL", "HOU"], value="All", label="Origin")
|
7 |
+
destination = gr.Dropdown(["All", "JFK", "LGA", "EWR"], value="All", label="Destination")
|
8 |
+
max_price = gr.Slider(0, 1000, value=1000, label="Max Price")
|
9 |
+
|
10 |
+
def filtered_data(origin, destination, max_price):
|
11 |
+
_df = df[df["price"] <= max_price]
|
12 |
+
if origin != "All":
|
13 |
+
_df = _df[_df["origin"] == origin]
|
14 |
+
if destination != "All":
|
15 |
+
_df = _df[_df["destination"] == destination]
|
16 |
+
return _df
|
17 |
+
|
18 |
+
gr.ScatterPlot(filtered_data, x="time", y="price", inputs=[origin, destination, max_price])
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
demo.launch()
|