aliabd HF Staff commited on
Commit
4f44907
·
verified ·
1 Parent(s): 933a508

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. README.md +7 -7
  2. data.py +13 -0
  3. requirements.txt +2 -0
  4. run.ipynb +1 -0
  5. run.py +21 -0
README.md CHANGED
@@ -1,12 +1,12 @@
 
1
  ---
2
- title: Plot Guide Filters Main
3
- emoji: 💻
4
- colorFrom: yellow
5
- colorTo: gray
6
  sdk: gradio
7
  sdk_version: 4.39.0
8
- app_file: app.py
9
  pinned: false
 
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: plot_guide_filters_main
4
+ emoji: 🔥
5
+ colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
  sdk_version: 4.39.0
9
+ app_file: run.py
10
  pinned: false
11
+ hf_oauth: true
12
  ---
 
 
data.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import random
4
+ from datetime import datetime, timedelta
5
+
6
+ now = datetime.now()
7
+
8
+ df = pd.DataFrame({
9
+ 'time': [now - timedelta(minutes=5*i) for i in range(25)],
10
+ 'price': np.random.randint(100, 1000, 25),
11
+ 'origin': [random.choice(["DFW", "DAL", "HOU"]) for _ in range(25)],
12
+ 'destination': [random.choice(["JFK", "LGA", "EWR"]) for _ in range(25)],
13
+ })
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
2
+ https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: plot_guide_filters"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/plot_guide_filters/data.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from data import df\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " origin = gr.Dropdown([\"All\", \"DFW\", \"DAL\", \"HOU\"], value=\"All\", label=\"Origin\")\n", " destination = gr.Dropdown([\"All\", \"JFK\", \"LGA\", \"EWR\"], value=\"All\", label=\"Destination\")\n", " max_price = gr.Slider(0, 1000, value=1000, label=\"Max Price\")\n", "\n", " def filtered_data(origin, destination, max_price):\n", " _df = df[df[\"price\"] <= max_price]\n", " if origin != \"All\":\n", " _df = _df[_df[\"origin\"] == origin]\n", " if destination != \"All\":\n", " _df = _df[_df[\"destination\"] == destination]\n", " return _df\n", "\n", " gr.ScatterPlot(filtered_data, x=\"time\", y=\"price\", inputs=[origin, destination, max_price])\n", " \n", "if __name__ == \"__main__\":\n", " demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from data import df
3
+
4
+ with gr.Blocks() as demo:
5
+ with gr.Row():
6
+ origin = gr.Dropdown(["All", "DFW", "DAL", "HOU"], value="All", label="Origin")
7
+ destination = gr.Dropdown(["All", "JFK", "LGA", "EWR"], value="All", label="Destination")
8
+ max_price = gr.Slider(0, 1000, value=1000, label="Max Price")
9
+
10
+ def filtered_data(origin, destination, max_price):
11
+ _df = df[df["price"] <= max_price]
12
+ if origin != "All":
13
+ _df = _df[_df["origin"] == origin]
14
+ if destination != "All":
15
+ _df = _df[_df["destination"] == destination]
16
+ return _df
17
+
18
+ gr.ScatterPlot(filtered_data, x="time", y="price", inputs=[origin, destination, max_price])
19
+
20
+ if __name__ == "__main__":
21
+ demo.launch()