Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.40.1
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: chatinterface_system_prompt_main
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
+
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.40.1
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
s3://gradio-main-build//gradio-3.40.1-py3-none-any.whl
|
run.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatinterface_system_prompt"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import time\n", "\n", "def echo(message, history, system_prompt, tokens):\n", " response = f\"System prompt: {system_prompt}\\n Message: {message}.\"\n", " for i in range(min(len(response), int(tokens))):\n", " time.sleep(0.05)\n", " yield response[: i+1]\n", "\n", "demo = gr.ChatInterface(echo, \n", " additional_inputs=[\n", " gr.Textbox(\"You are helpful AI.\", label=\"System Prompt\"), \n", " gr.Slider(10, 100)\n", " ]\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.queue().launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
|
4 |
+
def echo(message, history, system_prompt, tokens):
|
5 |
+
response = f"System prompt: {system_prompt}\n Message: {message}."
|
6 |
+
for i in range(min(len(response), int(tokens))):
|
7 |
+
time.sleep(0.05)
|
8 |
+
yield response[: i+1]
|
9 |
+
|
10 |
+
demo = gr.ChatInterface(echo,
|
11 |
+
additional_inputs=[
|
12 |
+
gr.Textbox("You are helpful AI.", label="System Prompt"),
|
13 |
+
gr.Slider(10, 100)
|
14 |
+
]
|
15 |
+
)
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
demo.queue().launch()
|