aliabd HF Staff commited on
Commit
fdcf4ed
·
verified ·
1 Parent(s): 7284605

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. run.ipynb +1 -1
  3. run.py +1 -1
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
- sdk_version: 4.38.1
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
 
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 4.39.0
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(audio):\n", " sr, y = audio\n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " return transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"]\n", "\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " gr.Audio(sources=[\"microphone\"]),\n", " \"text\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(audio):\n", " sr, y = audio\n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " return transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"] # type: ignore\n", "\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " gr.Audio(sources=[\"microphone\"]),\n", " \"text\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -9,7 +9,7 @@ def transcribe(audio):
9
  y = y.astype(np.float32)
10
  y /= np.max(np.abs(y))
11
 
12
- return transcriber({"sampling_rate": sr, "raw": y})["text"]
13
 
14
 
15
  demo = gr.Interface(
 
9
  y = y.astype(np.float32)
10
  y /= np.max(np.abs(y))
11
 
12
+ return transcriber({"sampling_rate": sr, "raw": y})["text"] # type: ignore
13
 
14
 
15
  demo = gr.Interface(