''' from fastapi import FastAPI, Query from pydantic import BaseModel import cloudscraper from bs4 import BeautifulSoup from transformers import pipeline import torch import re import os #os.environ["HF_HOME"] = "/home/user/huggingface" #os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface" app = FastAPI() class ThreadResponse(BaseModel): question: str replies: list[str] def clean_text(text: str) -> str: text = text.strip() text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip() return text @app.get("/scrape", response_model=ThreadResponse) def scrape(url: str = Query(...)): scraper = cloudscraper.create_scraper() response = scraper.get(url) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') comment_containers = soup.find_all('div', class_='post__content') if comment_containers: question = clean_text(comment_containers[0].get_text(strip=True, separator="\n")) replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]] return ThreadResponse(question=question, replies=replies) return ThreadResponse(question="", replies=[]) MODEL_NAME = "microsoft/phi-2" # Load the text-generation pipeline once at startup text_generator = pipeline( "text-generation", model=MODEL_NAME, trust_remote_code=True, device=0 if torch.cuda.is_available() else -1, # GPU if available, else CPU ) class PromptRequest(BaseModel): prompt: str @app.post("/generate") async def generate_text(request: PromptRequest): # The model expects a string prompt, so pass request.prompt directly outputs = text_generator( request.prompt, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True, num_return_sequences=1, ) generated_text = outputs[0]['generated_text'] # Optional: parse reasoning and content if your model uses special tags like if "" in generated_text: reasoning_content = generated_text.split("")[0].strip() content = generated_text.split("")[1].strip() else: reasoning_content = "" content = generated_text.strip() return { "reasoning_content": reasoning_content, "generated_text": content } ''' from fastapi import FastAPI, Query from pydantic import BaseModel import cloudscraper from bs4 import BeautifulSoup from transformers import T5Tokenizer, T5ForConditionalGeneration import torch import re app = FastAPI() # --- Data Models --- class ThreadResponse(BaseModel): question: str replies: list[str] class PromptRequest(BaseModel): prompt: str class GenerateResponse(BaseModel): reasoning_content: str generated_text: str # --- Utility Functions --- def clean_text(text: str) -> str: text = text.strip() text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip() return text # --- Scraping Endpoint --- @app.get("/scrape", response_model=ThreadResponse) def scrape(url: str = Query(...)): scraper = cloudscraper.create_scraper() response = scraper.get(url) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') comment_containers = soup.find_all('div', class_='post__content') if comment_containers: question = clean_text(comment_containers[0].get_text(strip=True, separator="\n")) replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]] return ThreadResponse(question=question, replies=replies) return ThreadResponse(question="", replies=[]) # --- Load T5-Small Model and Tokenizer --- tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-large") model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-large") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # --- Core Generation Function Using T5 Prompting --- def generate_text_with_t5(prompt: str) -> (str, str): """ Accepts a prompt string that includes the T5 task prefix (e.g. "summarize: ..."), generates output text, and optionally extracts reasoning if present. Returns a tuple (reasoning_content, generated_text). """ # Tokenize input prompt with truncation to max 512 tokens inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(device) # Generate output tokens with beam search for quality outputs = model.generate( inputs, max_length=512, num_beams=4, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Optional: parse reasoning if your prompt/model uses a special separator like if "" in generated_text: reasoning_content, content = generated_text.split("", 1) reasoning_content = reasoning_content.strip() content = content.strip() else: reasoning_content = "" content = generated_text.strip() return reasoning_content, content # --- /generate Endpoint Using T5 Prompting --- @app.post("/generate", response_model=GenerateResponse) async def generate(request: PromptRequest): """ Accepts a prompt string from frontend, which should include the T5 task prefix, e.g. "summarize: {text to summarize}" or "translate English to German: {text}". Returns generated text and optional reasoning content. """ reasoning_content, generated_text = generate_text_with_t5(request.prompt) return GenerateResponse(reasoning_content=reasoning_content, generated_text=generated_text)