from fastapi import FastAPI from pydantic import BaseModel from llama_cpp import Llama app = FastAPI() qwen3_gguf_llm = Llama.from_pretrained( repo_id="unsloth/Qwen3-0.6B-GGUF", filename="Qwen3-0.6B-BF16.gguf", ) class PromptRequest(BaseModel): prompt: str class GenerateResponse(BaseModel): reasoning_content: str = "" generated_text: str @app.post("/generate/qwen3-0.6b-gguf", response_model=GenerateResponse) async def generate_qwen3_gguf_endpoint(request: PromptRequest): messages = [{"role": "user", "content": request.prompt}] response = qwen3_gguf_llm.create_chat_completion(messages=messages) generated_text = response['choices'][0]['message']['content'] return GenerateResponse(generated_text=generated_text)