Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -149,6 +149,10 @@ pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_model_name)
|
|
149 |
pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_model_name)
|
150 |
pegasus_model = pegasus_model.to(device)
|
151 |
|
|
|
|
|
|
|
|
|
152 |
|
153 |
|
154 |
# --- Generation Functions ---
|
@@ -213,11 +217,37 @@ def generate_pegasus(prompt: str) -> (str, str):
|
|
213 |
# Pegasus does not use <think> tags, so no reasoning extraction
|
214 |
return "", generated_text.strip()
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
@app.post("/generate/{model_name}", response_model=GenerateResponse)
|
218 |
async def generate(
|
219 |
request: PromptRequest,
|
220 |
-
model_name: str = Path(..., description="Model to use: 'deepseekr1-qwen', 't5-large'
|
221 |
):
|
222 |
if model_name == "deepseekr1-qwen":
|
223 |
reasoning, text = generate_deepseek(request.prompt)
|
@@ -225,12 +255,15 @@ async def generate(
|
|
225 |
reasoning, text = generate_t5(request.prompt)
|
226 |
elif model_name == "pegasus-large":
|
227 |
reasoning, text = generate_pegasus(request.prompt)
|
|
|
|
|
228 |
else:
|
229 |
return GenerateResponse(reasoning_content="", generated_text=f"Error: Unknown model '{model_name}'.")
|
230 |
|
231 |
return GenerateResponse(reasoning_content=reasoning, generated_text=text)
|
232 |
|
233 |
|
|
|
234 |
# --- Global Exception Handler ---
|
235 |
|
236 |
@app.exception_handler(Exception)
|
|
|
149 |
pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_model_name)
|
150 |
pegasus_model = pegasus_model.to(device)
|
151 |
|
152 |
+
qwen3_model_name = "Qwen/Qwen3-0.6B"
|
153 |
+
qwen3_tokenizer = AutoTokenizer.from_pretrained(qwen3_model_name)
|
154 |
+
qwen3_model = AutoModelForCausalLM.from_pretrained(qwen3_model_name)
|
155 |
+
qwen3_model = qwen3_model.to(device)
|
156 |
|
157 |
|
158 |
# --- Generation Functions ---
|
|
|
217 |
# Pegasus does not use <think> tags, so no reasoning extraction
|
218 |
return "", generated_text.strip()
|
219 |
|
220 |
+
def generate_qwen3(prompt: str) -> (str, str):
|
221 |
+
inputs = qwen3_tokenizer(
|
222 |
+
prompt,
|
223 |
+
return_tensors="pt",
|
224 |
+
truncation=True,
|
225 |
+
max_length=1024,
|
226 |
+
).to(device)
|
227 |
+
|
228 |
+
outputs = qwen3_model.generate(
|
229 |
+
**inputs,
|
230 |
+
max_new_tokens=512,
|
231 |
+
temperature=0.7,
|
232 |
+
top_p=0.9,
|
233 |
+
do_sample=True,
|
234 |
+
num_return_sequences=1,
|
235 |
+
pad_token_id=qwen3_tokenizer.eos_token_id,
|
236 |
+
)
|
237 |
+
|
238 |
+
generated_text = qwen3_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
239 |
+
|
240 |
+
if "</think>" in generated_text:
|
241 |
+
reasoning_content, content = generated_text.split("</think>", 1)
|
242 |
+
return reasoning_content.strip(), content.strip()
|
243 |
+
else:
|
244 |
+
return "", generated_text.strip()
|
245 |
+
|
246 |
|
247 |
@app.post("/generate/{model_name}", response_model=GenerateResponse)
|
248 |
async def generate(
|
249 |
request: PromptRequest,
|
250 |
+
model_name: str = Path(..., description="Model to use: 'deepseekr1-qwen', 't5-large', 'pegasus-large', or 'qwen3-0.6b'")
|
251 |
):
|
252 |
if model_name == "deepseekr1-qwen":
|
253 |
reasoning, text = generate_deepseek(request.prompt)
|
|
|
255 |
reasoning, text = generate_t5(request.prompt)
|
256 |
elif model_name == "pegasus-large":
|
257 |
reasoning, text = generate_pegasus(request.prompt)
|
258 |
+
elif model_name == "qwen3-0.6b":
|
259 |
+
reasoning, text = generate_qwen3(request.prompt)
|
260 |
else:
|
261 |
return GenerateResponse(reasoning_content="", generated_text=f"Error: Unknown model '{model_name}'.")
|
262 |
|
263 |
return GenerateResponse(reasoning_content=reasoning, generated_text=text)
|
264 |
|
265 |
|
266 |
+
|
267 |
# --- Global Exception Handler ---
|
268 |
|
269 |
@app.exception_handler(Exception)
|