Spaces:
Running
Running
Upload 3 files
Browse files- Dockerfile +13 -0
- app.py +74 -0
- requirements.txt +7 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt .
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
+
|
9 |
+
COPY app.py .
|
10 |
+
|
11 |
+
EXPOSE 7860
|
12 |
+
|
13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Query
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import cloudscraper
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
import torch
|
7 |
+
import re
|
8 |
+
import os
|
9 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/.cache"
|
10 |
+
os.environ["HF_HOME"] = "/tmp/.cache"
|
11 |
+
os.environ["HF_DATASETS_CACHE"] = "/tmp/.cache"
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
class ThreadResponse(BaseModel):
|
16 |
+
question: str
|
17 |
+
replies: list[str]
|
18 |
+
|
19 |
+
def clean_text(text: str) -> str:
|
20 |
+
text = text.strip()
|
21 |
+
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
|
22 |
+
return text
|
23 |
+
|
24 |
+
@app.get("/scrape", response_model=ThreadResponse)
|
25 |
+
def scrape(url: str = Query(...)):
|
26 |
+
scraper = cloudscraper.create_scraper()
|
27 |
+
response = scraper.get(url)
|
28 |
+
|
29 |
+
if response.status_code == 200:
|
30 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
31 |
+
comment_containers = soup.find_all('div', class_='post__content')
|
32 |
+
|
33 |
+
if comment_containers:
|
34 |
+
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
|
35 |
+
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
|
36 |
+
return ThreadResponse(question=question, replies=replies)
|
37 |
+
return ThreadResponse(question="", replies=[])
|
38 |
+
|
39 |
+
|
40 |
+
MODEL_NAME = "sarvamai/sarvam-m"
|
41 |
+
|
42 |
+
# Load tokenizer and model once at startup, with device auto-mapping
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype="auto", device_map="auto")
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
class PromptRequest(BaseModel):
|
48 |
+
prompt: str
|
49 |
+
|
50 |
+
@app.post("/generate")
|
51 |
+
async def generate_text(request: PromptRequest):
|
52 |
+
# Prepare chat-style input with thinking mode enabled
|
53 |
+
messages = [{"role": "user", "content": request.prompt}]
|
54 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, enable_thinking=True)
|
55 |
+
|
56 |
+
inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
57 |
+
with torch.no_grad():
|
58 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512, temperature=0.5)
|
59 |
+
output_ids = generated_ids[:, inputs.input_ids.shape[-1]:].tolist()[0]
|
60 |
+
output_text = tokenizer.decode(output_ids)
|
61 |
+
|
62 |
+
# Extract reasoning and content parts if thinking tags are present
|
63 |
+
if "</think>" in output_text:
|
64 |
+
reasoning_content = output_text.split("</think>")[0].strip()
|
65 |
+
content = output_text.split("</think>")[1].strip().rstrip("</s>")
|
66 |
+
else:
|
67 |
+
reasoning_content = ""
|
68 |
+
content = output_text.strip().rstrip("</s>")
|
69 |
+
|
70 |
+
return {
|
71 |
+
"reasoning_content": reasoning_content,
|
72 |
+
"generated_text": content
|
73 |
+
}
|
74 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
cloudscraper
|
4 |
+
beautifulsoup4
|
5 |
+
pydantic
|
6 |
+
torch
|
7 |
+
transformers
|