Spaces:
Running
Running
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from llama_cpp import Llama | |
app = FastAPI() | |
qwen3_gguf_llm = Llama.from_pretrained( | |
repo_id="unsloth/Qwen3-0.6B-GGUF", | |
filename="Qwen3-0.6B-UD-Q8_K_XL.gguf" | |
) | |
class PromptRequest(BaseModel): | |
prompt: str | |
class GenerateResponse(BaseModel): | |
generated_text: str | |
# Simple in-memory conversation memory (list of messages) | |
conversation_history = [] | |
async def generate_qwen3_gguf_endpoint(request: PromptRequest): | |
# Append user message to history | |
conversation_history.append({"role": "user", "content": request.prompt}) | |
# Call the model with full conversation history | |
response = qwen3_gguf_llm.create_chat_completion(messages=conversation_history) | |
# Extract assistant reply | |
assistant_message = response['choices'][0]['message']['content'] | |
# Append assistant reply to history | |
conversation_history.append({"role": "assistant", "content": assistant_message}) | |
return GenerateResponse(generated_text=assistant_message) | |