File size: 99,356 Bytes
dad14ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Welcome to the Second Lab - Week 1, Day 3\n",
    "\n",
    "Today we will work with lots of models! This is a way to get comfortable with APIs."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
    "            <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
    "\n",
    "import os\n",
    "import json\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from anthropic import Anthropic\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Always remember to do this!\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OpenAI API Key exists and begins sk-proj-\n",
      "Anthropic API Key not set (and this is optional)\n",
      "Google API Key not set (and this is optional)\n",
      "DeepSeek API Key exists and begins sk-\n",
      "Groq API Key exists and begins gsk_\n"
     ]
    }
   ],
   "source": [
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
    "groq_api_key = os.getenv('GROQ_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set (and this is optional)\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
    "else:\n",
    "    print(\"Google API Key not set (and this is optional)\")\n",
    "\n",
    "if deepseek_api_key:\n",
    "    print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
    "else:\n",
    "    print(\"DeepSeek API Key not set (and this is optional)\")\n",
    "\n",
    "if groq_api_key:\n",
    "    print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
    "else:\n",
    "    print(\"Groq API Key not set (and this is optional)\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
    "request += \"Answer only with the question, no explanation.\"\n",
    "messages = [{\"role\": \"user\", \"content\": request}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'role': 'user',\n",
       "  'content': 'Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. Answer only with the question, no explanation.'}]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "messages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "How would you approach resolving the ethical dilemmas of AI decision-making in life-and-death situations, balancing autonomy, accountability, and societal norms?\n"
     ]
    }
   ],
   "source": [
    "openai = OpenAI()\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4o-mini\",\n",
    "    messages=messages,\n",
    ")\n",
    "question = response.choices[0].message.content\n",
    "print(question)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "competitors = []\n",
    "answers = []\n",
    "messages = [{\"role\": \"user\", \"content\": question}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that carefully considers autonomy, accountability, and societal norms. Here’s how I would approach this complex issue:\n",
       "\n",
       "### 1. Establish Ethical Frameworks\n",
       "\n",
       "**Utilitarianism vs. Deontological Ethics:** \n",
       "- Utilize a combination of ethical theories to guide AI decision-making. Utilitarianism focuses on the outcomes (the greatest good for the greatest number), while deontological ethics emphasizes duties and principles regardless of outcomes. An integrated approach can provide a more nuanced understanding of ethical dilemmas.\n",
       "\n",
       "**Principles of AI Ethics:**\n",
       "- Develop and follow fundamental principles such as fairness, transparency, accountability, nondiscrimination, and respect for human dignity. These principles can help guide developers and stakeholders in creating AI systems.\n",
       "\n",
       "### 2. Incorporate Stakeholder Perspectives\n",
       "\n",
       "**Engaging Diverse Stakeholders:**\n",
       "- Include a range of perspectives from ethicists, medical professionals, legal experts, sociologists, and the affected communities. This engagement will ensure that the AI systems reflect a broad spectrum of values and considerations.\n",
       "\n",
       "**Public Deliberation:**\n",
       "- Conduct public consultations to gather input from the general populace regarding their values and concerns. This process helps ensure that societal norms and expectations are factored into AI decision-making.\n",
       "\n",
       "### 3. Define Autonomy and Accountability\n",
       "\n",
       "**Respect for Human Autonomy:**\n",
       "- Design AI systems that prioritize human oversight, allowing individuals to retain agency over critical decisions. In life-and-death situations, this may involve allowing human operators to make the final call, especially when emotional and moral considerations are at stake.\n",
       "\n",
       "**Accountability Structures:**\n",
       "- Clearly define who is accountable when AI systems make decisions that lead to life-and-death outcomes. This may involve delineating roles for software developers, healthcare providers, and institutions.\n",
       "\n",
       "**Legal and Regulatory Frameworks:**\n",
       "- Advocate for the establishment of robust legal and regulatory frameworks that define liability for AI decision-making. This framework should specify accountability in cases of errors leading to harm or fatalities.\n",
       "\n",
       "### 4. Transparency and Explainability\n",
       "\n",
       "**Explainable AI (XAI):**\n",
       "- Deploy AI systems that can provide understandable and interpretable reasons for their decisions. In life-and-death scenarios, users must comprehend the rationale behind medical suggestions or emergency responses.\n",
       "\n",
       "**Data and Algorithm Transparency:**\n",
       "- Ensure transparency in data sources and algorithms used in AI systems. Stakeholders should understand how data biases may affect decision-making processes.\n",
       "\n",
       "### 5. Continuous Learning and Adaptation\n",
       "\n",
       "**Feedback Mechanisms:**\n",
       "- Incorporate systems for continuous feedback, allowing for the assessment and revision of AI systems based on real-world outcomes and user experiences.\n",
       "\n",
       "**Ethical Review Boards:**\n",
       "- Establish ethical review boards to regularly evaluate the performance and implications of AI systems in critical areas, ensuring they align with evolving societal norms and ethical considerations.\n",
       "\n",
       "### 6. Development of Clinical and Ethical Guidelines\n",
       "\n",
       "**Clinical Protocols:**\n",
       "- For use in healthcare, create clinical guidelines that define the permissible role of AI in decision-making based on context, patient rights, and professional standards.\n",
       "\n",
       "**Ethical Usage Policies:**\n",
       "- Develop clear policies that outline the conditions under which AI can be used in life-and-death scenarios, ensuring that the technology is implemented ethically.\n",
       "\n",
       "### Conclusion\n",
       "\n",
       "Balancing autonomy, accountability, and societal norms in AI decision-making, particularly in life-and-death situations, requires thoughtful integration of ethical principles, stakeholder engagement, transparency, and a dynamic regulatory environment. By taking these steps, we can navigate the complexities involved and work toward ethically sound AI systems that prioritize human welfare and dignity."
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# The API we know well\n",
    "\n",
    "model_name = \"gpt-4o-mini\"\n",
    "\n",
    "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Anthropic has a slightly different API, and Max Tokens is required\n",
    "\n",
    "model_name = \"claude-3-7-sonnet-latest\"\n",
    "\n",
    "claude = Anthropic()\n",
    "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
    "answer = response.content[0].text\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
    "model_name = \"gemini-2.0-flash\"\n",
    "\n",
    "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "ename": "AuthenticationError",
     "evalue": "Error code: 401 - {'error': {'message': 'Authentication Fails, Your api key: ****2uMA is invalid', 'type': 'authentication_error', 'param': None, 'code': 'invalid_request_error'}}",
     "output_type": "error",
     "traceback": [
      "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
      "\u001b[31mAuthenticationError\u001b[39m                       Traceback (most recent call last)",
      "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[22]\u001b[39m\u001b[32m, line 4\u001b[39m\n\u001b[32m      1\u001b[39m deepseek = OpenAI(api_key=deepseek_api_key, base_url=\u001b[33m\"\u001b[39m\u001b[33mhttps://api.deepseek.com/v1\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m      2\u001b[39m model_name = \u001b[33m\"\u001b[39m\u001b[33mdeepseek-chat\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m4\u001b[39m response = \u001b[43mdeepseek\u001b[49m\u001b[43m.\u001b[49m\u001b[43mchat\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcompletions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmodel_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m      5\u001b[39m answer = response.choices[\u001b[32m0\u001b[39m].message.content\n\u001b[32m      7\u001b[39m display(Markdown(answer))\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py:287\u001b[39m, in \u001b[36mrequired_args.<locals>.inner.<locals>.wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m    285\u001b[39m             msg = \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[32m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m\n\u001b[32m    286\u001b[39m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[32m--> \u001b[39m\u001b[32m287\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/completions.py:925\u001b[39m, in \u001b[36mCompletions.create\u001b[39m\u001b[34m(self, messages, model, audio, frequency_penalty, function_call, functions, logit_bias, logprobs, max_completion_tokens, max_tokens, metadata, modalities, n, parallel_tool_calls, prediction, presence_penalty, reasoning_effort, response_format, seed, service_tier, stop, store, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, web_search_options, extra_headers, extra_query, extra_body, timeout)\u001b[39m\n\u001b[32m    882\u001b[39m \u001b[38;5;129m@required_args\u001b[39m([\u001b[33m\"\u001b[39m\u001b[33mmessages\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mmodel\u001b[39m\u001b[33m\"\u001b[39m], [\u001b[33m\"\u001b[39m\u001b[33mmessages\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mmodel\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mstream\u001b[39m\u001b[33m\"\u001b[39m])\n\u001b[32m    883\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mcreate\u001b[39m(\n\u001b[32m    884\u001b[39m     \u001b[38;5;28mself\u001b[39m,\n\u001b[32m   (...)\u001b[39m\u001b[32m    922\u001b[39m     timeout: \u001b[38;5;28mfloat\u001b[39m | httpx.Timeout | \u001b[38;5;28;01mNone\u001b[39;00m | NotGiven = NOT_GIVEN,\n\u001b[32m    923\u001b[39m ) -> ChatCompletion | Stream[ChatCompletionChunk]:\n\u001b[32m    924\u001b[39m     validate_response_format(response_format)\n\u001b[32m--> \u001b[39m\u001b[32m925\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    926\u001b[39m \u001b[43m        \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m/chat/completions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m    927\u001b[39m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    928\u001b[39m \u001b[43m            \u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m    929\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmessages\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    930\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmodel\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    931\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43maudio\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43maudio\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    932\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfrequency_penalty\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    933\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfunction_call\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    934\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfunctions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    935\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mlogit_bias\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    936\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mlogprobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    937\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmax_completion_tokens\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_completion_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    938\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmax_tokens\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    939\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmetadata\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    940\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmodalities\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodalities\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    941\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mn\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    942\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mparallel_tool_calls\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mparallel_tool_calls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    943\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mprediction\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mprediction\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    944\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mpresence_penalty\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    945\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mreasoning_effort\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mreasoning_effort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    946\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mresponse_format\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    947\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mseed\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    948\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mservice_tier\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice_tier\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    949\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstop\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    950\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstore\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    951\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstream\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    952\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstream_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    953\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtemperature\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    954\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtool_choice\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    955\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtools\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    956\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtop_logprobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    957\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtop_p\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    958\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43muser\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    959\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mweb_search_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mweb_search_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    960\u001b[39m \u001b[43m            \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    961\u001b[39m \u001b[43m            \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[43m.\u001b[49m\u001b[43mCompletionCreateParamsStreaming\u001b[49m\n\u001b[32m    962\u001b[39m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\n\u001b[32m    963\u001b[39m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[43m.\u001b[49m\u001b[43mCompletionCreateParamsNonStreaming\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    964\u001b[39m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    965\u001b[39m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    966\u001b[39m \u001b[43m            \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtimeout\u001b[49m\n\u001b[32m    967\u001b[39m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    968\u001b[39m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m=\u001b[49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    969\u001b[39m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m    970\u001b[39m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m=\u001b[49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    971\u001b[39m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/_base_client.py:1242\u001b[39m, in \u001b[36mSyncAPIClient.post\u001b[39m\u001b[34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[39m\n\u001b[32m   1228\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mpost\u001b[39m(\n\u001b[32m   1229\u001b[39m     \u001b[38;5;28mself\u001b[39m,\n\u001b[32m   1230\u001b[39m     path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[32m   (...)\u001b[39m\u001b[32m   1237\u001b[39m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] | \u001b[38;5;28;01mNone\u001b[39;00m = \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[32m   1238\u001b[39m ) -> ResponseT | _StreamT:\n\u001b[32m   1239\u001b[39m     opts = FinalRequestOptions.construct(\n\u001b[32m   1240\u001b[39m         method=\u001b[33m\"\u001b[39m\u001b[33mpost\u001b[39m\u001b[33m\"\u001b[39m, url=path, json_data=body, files=to_httpx_files(files), **options\n\u001b[32m   1241\u001b[39m     )\n\u001b[32m-> \u001b[39m\u001b[32m1242\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/_base_client.py:1037\u001b[39m, in \u001b[36mSyncAPIClient.request\u001b[39m\u001b[34m(self, cast_to, options, stream, stream_cls)\u001b[39m\n\u001b[32m   1034\u001b[39m             err.response.read()\n\u001b[32m   1036\u001b[39m         log.debug(\u001b[33m\"\u001b[39m\u001b[33mRe-raising status error\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m-> \u001b[39m\u001b[32m1037\u001b[39m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m._make_status_error_from_response(err.response) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m   1039\u001b[39m     \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[32m   1041\u001b[39m \u001b[38;5;28;01massert\u001b[39;00m response \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[33m\"\u001b[39m\u001b[33mcould not resolve response (should never happen)\u001b[39m\u001b[33m\"\u001b[39m\n",
      "\u001b[31mAuthenticationError\u001b[39m: Error code: 401 - {'error': {'message': 'Authentication Fails, Your api key: ****2uMA is invalid', 'type': 'authentication_error', 'param': None, 'code': 'invalid_request_error'}}"
     ]
    }
   ],
   "source": [
    "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
    "model_name = \"deepseek-chat\"\n",
    "\n",
    "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that balances autonomy, accountability, and societal norms. Here's a comprehensive framework to address these challenges:\n",
       "\n",
       "**I. Establish Clear Guidelines and Regulations**\n",
       "\n",
       "1. **Define autonomy boundaries**: Establish clear limits on AI decision-making authority, ensuring that humans are involved in critical decisions.\n",
       "2. **Develop regulations and standards**: Create and enforce regulations, such as those related to transparency, explainability, and accountability, to guide AI development and deployment.\n",
       "3. **Industry-wide collaboration**: Foster collaboration among AI developers, regulators, and stakeholders to establish common standards and best practices.\n",
       "\n",
       "**II. Implement Transparency and Explainability**\n",
       "\n",
       "1. **Model interpretability**: Develop techniques to explain AI decision-making processes, enabling humans to understand the reasoning behind AI-driven choices.\n",
       "2. **Audit trails and logging**: Maintain detailed records of AI decision-making processes, allowing for post-hoc analysis and accountability.\n",
       "3. **Regular model updates and validation**: Ensure that AI models are regularly updated and validated to prevent biases and inaccuracies.\n",
       "\n",
       "**III. Ensure Human Oversight and Review**\n",
       "\n",
       "1. **Human-in-the-loop**: Design AI systems that require human review and approval for critical decisions, particularly in life-and-death situations.\n",
       "2. **Independent review boards**: Establish independent review boards to assess AI decision-making and provide feedback for improvement.\n",
       "3. **Continuous monitoring and evaluation**: Regularly monitor AI performance and evaluate its impact on society, making adjustments as needed.\n",
       "\n",
       "**IV. Address Accountability and Liability**\n",
       "\n",
       "1. **Clear accountability structures**: Establish clear lines of accountability, defining roles and responsibilities for AI decision-making.\n",
       "2. **Liability frameworks**: Develop frameworks to address liability and responsibility in cases where AI decision-making results in harm or damage.\n",
       "3. **Insurance and risk management**: Explore insurance and risk management options to mitigate the financial and reputational risks associated with AI decision-making.\n",
       "\n",
       "**V. Engage with Societal Norms and Values**\n",
       "\n",
       "1. **Public engagement and education**: Engage with the public to raise awareness about AI decision-making and its implications, fostering a broader understanding of the technology.\n",
       "2. **Value alignment**: Ensure that AI systems are designed to align with societal values, such as respect for human life, dignity, and autonomy.\n",
       "3. **Cultural and contextual considerations**: Consider cultural and contextual factors that may influence AI decision-making, adapting AI systems to accommodate diverse perspectives and needs.\n",
       "\n",
       "**VI. Foster a Culture of Responsibility and Continuous Improvement**\n",
       "\n",
       "1. **Ethics-by-design**: Integrate ethical considerations into AI development from the outset, rather than treating ethics as an afterthought.\n",
       "2. **Responsible AI development**: Encourage responsible AI development practices, prioritizing transparency, accountability, and human well-being.\n",
       "3. **Ongoing research and development**: Continuously invest in research and development to improve AI decision-making, addressing emerging challenges and concerns.\n",
       "\n",
       "By adopting this comprehensive framework, we can work towards resolving the ethical dilemmas of AI decision-making in life-and-death situations, balancing autonomy, accountability, and societal norms to ensure that AI systems serve humanity's best interests."
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
    "model_name = \"llama-3.3-70b-versatile\"\n",
    "\n",
    "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## For the next cell, we will use Ollama\n",
    "\n",
    "Ollama runs a local web service that gives an OpenAI compatible endpoint,  \n",
    "and runs models locally using high performance C++ code.\n",
    "\n",
    "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
    "\n",
    "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
    "\n",
    "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
    "\n",
    "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
    "\n",
    "`ollama pull <model_name>` downloads a model locally  \n",
    "`ollama ls` lists all the models you've downloaded  \n",
    "`ollama rm <model_name>` deletes the specified model from your downloads"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
    "            <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠋ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠙ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠹ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠸ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠼ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠴ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠦ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest ⠧ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest \u001b[K\n",
      "pulling dde5aa3fc5ff: 100% ▕██████████████████▏ 2.0 GB                         \u001b[K\n",
      "pulling 966de95ca8a6: 100% ▕██████████████████▏ 1.4 KB                         \u001b[K\n",
      "pulling fcc5a6bec9da: 100% ▕██████████████████▏ 7.7 KB                         \u001b[K\n",
      "pulling a70ff7e570d9: 100% ▕██████████████████▏ 6.0 KB                         \u001b[K\n",
      "pulling 56bb8bd477a5: 100% ▕██████████████████▏   96 B                         \u001b[K\n",
      "pulling 34bb5ab01051: 100% ▕██████████████████▏  561 B                         \u001b[K\n",
      "verifying sha256 digest \u001b[K\n",
      "writing manifest \u001b[K\n",
      "success \u001b[K\u001b[?25h\u001b[?2026l\n"
     ]
    }
   ],
   "source": [
    "!ollama pull llama3.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "ename": "InternalServerError",
     "evalue": "Error code: 500 - {'error': {'message': 'error unmarshalling llm prediction response: json: cannot unmarshal number into Go struct field CompletionResponse.done_reason of type string', 'type': 'api_error', 'param': None, 'code': None}}",
     "output_type": "error",
     "traceback": [
      "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
      "\u001b[31mInternalServerError\u001b[39m                       Traceback (most recent call last)",
      "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[25]\u001b[39m\u001b[32m, line 4\u001b[39m\n\u001b[32m      1\u001b[39m ollama = OpenAI(base_url=\u001b[33m'\u001b[39m\u001b[33mhttp://localhost:11434/v1\u001b[39m\u001b[33m'\u001b[39m, api_key=\u001b[33m'\u001b[39m\u001b[33mollama\u001b[39m\u001b[33m'\u001b[39m)\n\u001b[32m      2\u001b[39m model_name = \u001b[33m\"\u001b[39m\u001b[33mllama3.2\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m4\u001b[39m response = \u001b[43mollama\u001b[49m\u001b[43m.\u001b[49m\u001b[43mchat\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcompletions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmodel_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m      5\u001b[39m answer = response.choices[\u001b[32m0\u001b[39m].message.content\n\u001b[32m      7\u001b[39m display(Markdown(answer))\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py:287\u001b[39m, in \u001b[36mrequired_args.<locals>.inner.<locals>.wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m    285\u001b[39m             msg = \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[32m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m\n\u001b[32m    286\u001b[39m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[32m--> \u001b[39m\u001b[32m287\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/completions.py:925\u001b[39m, in \u001b[36mCompletions.create\u001b[39m\u001b[34m(self, messages, model, audio, frequency_penalty, function_call, functions, logit_bias, logprobs, max_completion_tokens, max_tokens, metadata, modalities, n, parallel_tool_calls, prediction, presence_penalty, reasoning_effort, response_format, seed, service_tier, stop, store, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, web_search_options, extra_headers, extra_query, extra_body, timeout)\u001b[39m\n\u001b[32m    882\u001b[39m \u001b[38;5;129m@required_args\u001b[39m([\u001b[33m\"\u001b[39m\u001b[33mmessages\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mmodel\u001b[39m\u001b[33m\"\u001b[39m], [\u001b[33m\"\u001b[39m\u001b[33mmessages\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mmodel\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mstream\u001b[39m\u001b[33m\"\u001b[39m])\n\u001b[32m    883\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mcreate\u001b[39m(\n\u001b[32m    884\u001b[39m     \u001b[38;5;28mself\u001b[39m,\n\u001b[32m   (...)\u001b[39m\u001b[32m    922\u001b[39m     timeout: \u001b[38;5;28mfloat\u001b[39m | httpx.Timeout | \u001b[38;5;28;01mNone\u001b[39;00m | NotGiven = NOT_GIVEN,\n\u001b[32m    923\u001b[39m ) -> ChatCompletion | Stream[ChatCompletionChunk]:\n\u001b[32m    924\u001b[39m     validate_response_format(response_format)\n\u001b[32m--> \u001b[39m\u001b[32m925\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    926\u001b[39m \u001b[43m        \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m/chat/completions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m    927\u001b[39m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    928\u001b[39m \u001b[43m            \u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m    929\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmessages\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    930\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmodel\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    931\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43maudio\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43maudio\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    932\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfrequency_penalty\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    933\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfunction_call\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    934\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfunctions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    935\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mlogit_bias\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    936\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mlogprobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    937\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmax_completion_tokens\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_completion_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    938\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmax_tokens\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    939\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmetadata\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    940\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmodalities\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodalities\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    941\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mn\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    942\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mparallel_tool_calls\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mparallel_tool_calls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    943\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mprediction\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mprediction\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    944\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mpresence_penalty\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    945\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mreasoning_effort\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mreasoning_effort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    946\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mresponse_format\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    947\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mseed\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    948\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mservice_tier\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice_tier\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    949\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstop\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    950\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstore\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    951\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstream\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    952\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstream_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    953\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtemperature\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    954\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtool_choice\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    955\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtools\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    956\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtop_logprobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    957\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtop_p\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    958\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43muser\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    959\u001b[39m \u001b[43m                \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mweb_search_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mweb_search_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    960\u001b[39m \u001b[43m            \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    961\u001b[39m \u001b[43m            \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[43m.\u001b[49m\u001b[43mCompletionCreateParamsStreaming\u001b[49m\n\u001b[32m    962\u001b[39m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\n\u001b[32m    963\u001b[39m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[43m.\u001b[49m\u001b[43mCompletionCreateParamsNonStreaming\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    964\u001b[39m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    965\u001b[39m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    966\u001b[39m \u001b[43m            \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtimeout\u001b[49m\n\u001b[32m    967\u001b[39m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    968\u001b[39m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m=\u001b[49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    969\u001b[39m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m    970\u001b[39m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m=\u001b[49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    971\u001b[39m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/_base_client.py:1242\u001b[39m, in \u001b[36mSyncAPIClient.post\u001b[39m\u001b[34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[39m\n\u001b[32m   1228\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mpost\u001b[39m(\n\u001b[32m   1229\u001b[39m     \u001b[38;5;28mself\u001b[39m,\n\u001b[32m   1230\u001b[39m     path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[32m   (...)\u001b[39m\u001b[32m   1237\u001b[39m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] | \u001b[38;5;28;01mNone\u001b[39;00m = \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[32m   1238\u001b[39m ) -> ResponseT | _StreamT:\n\u001b[32m   1239\u001b[39m     opts = FinalRequestOptions.construct(\n\u001b[32m   1240\u001b[39m         method=\u001b[33m\"\u001b[39m\u001b[33mpost\u001b[39m\u001b[33m\"\u001b[39m, url=path, json_data=body, files=to_httpx_files(files), **options\n\u001b[32m   1241\u001b[39m     )\n\u001b[32m-> \u001b[39m\u001b[32m1242\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/projects/llms/agents/.venv/lib/python3.12/site-packages/openai/_base_client.py:1037\u001b[39m, in \u001b[36mSyncAPIClient.request\u001b[39m\u001b[34m(self, cast_to, options, stream, stream_cls)\u001b[39m\n\u001b[32m   1034\u001b[39m             err.response.read()\n\u001b[32m   1036\u001b[39m         log.debug(\u001b[33m\"\u001b[39m\u001b[33mRe-raising status error\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m-> \u001b[39m\u001b[32m1037\u001b[39m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m._make_status_error_from_response(err.response) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m   1039\u001b[39m     \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[32m   1041\u001b[39m \u001b[38;5;28;01massert\u001b[39;00m response \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[33m\"\u001b[39m\u001b[33mcould not resolve response (should never happen)\u001b[39m\u001b[33m\"\u001b[39m\n",
      "\u001b[31mInternalServerError\u001b[39m: Error code: 500 - {'error': {'message': 'error unmarshalling llm prediction response: json: cannot unmarshal number into Go struct field CompletionResponse.done_reason of type string', 'type': 'api_error', 'param': None, 'code': None}}"
     ]
    }
   ],
   "source": [
    "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
    "model_name = \"llama3.2\"\n",
    "\n",
    "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['gpt-4o-mini', 'llama-3.3-70b-versatile']\n",
      "['Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that carefully considers autonomy, accountability, and societal norms. Here’s how I would approach this complex issue:\\n\\n### 1. Establish Ethical Frameworks\\n\\n**Utilitarianism vs. Deontological Ethics:** \\n- Utilize a combination of ethical theories to guide AI decision-making. Utilitarianism focuses on the outcomes (the greatest good for the greatest number), while deontological ethics emphasizes duties and principles regardless of outcomes. An integrated approach can provide a more nuanced understanding of ethical dilemmas.\\n\\n**Principles of AI Ethics:**\\n- Develop and follow fundamental principles such as fairness, transparency, accountability, nondiscrimination, and respect for human dignity. These principles can help guide developers and stakeholders in creating AI systems.\\n\\n### 2. Incorporate Stakeholder Perspectives\\n\\n**Engaging Diverse Stakeholders:**\\n- Include a range of perspectives from ethicists, medical professionals, legal experts, sociologists, and the affected communities. This engagement will ensure that the AI systems reflect a broad spectrum of values and considerations.\\n\\n**Public Deliberation:**\\n- Conduct public consultations to gather input from the general populace regarding their values and concerns. This process helps ensure that societal norms and expectations are factored into AI decision-making.\\n\\n### 3. Define Autonomy and Accountability\\n\\n**Respect for Human Autonomy:**\\n- Design AI systems that prioritize human oversight, allowing individuals to retain agency over critical decisions. In life-and-death situations, this may involve allowing human operators to make the final call, especially when emotional and moral considerations are at stake.\\n\\n**Accountability Structures:**\\n- Clearly define who is accountable when AI systems make decisions that lead to life-and-death outcomes. This may involve delineating roles for software developers, healthcare providers, and institutions.\\n\\n**Legal and Regulatory Frameworks:**\\n- Advocate for the establishment of robust legal and regulatory frameworks that define liability for AI decision-making. This framework should specify accountability in cases of errors leading to harm or fatalities.\\n\\n### 4. Transparency and Explainability\\n\\n**Explainable AI (XAI):**\\n- Deploy AI systems that can provide understandable and interpretable reasons for their decisions. In life-and-death scenarios, users must comprehend the rationale behind medical suggestions or emergency responses.\\n\\n**Data and Algorithm Transparency:**\\n- Ensure transparency in data sources and algorithms used in AI systems. Stakeholders should understand how data biases may affect decision-making processes.\\n\\n### 5. Continuous Learning and Adaptation\\n\\n**Feedback Mechanisms:**\\n- Incorporate systems for continuous feedback, allowing for the assessment and revision of AI systems based on real-world outcomes and user experiences.\\n\\n**Ethical Review Boards:**\\n- Establish ethical review boards to regularly evaluate the performance and implications of AI systems in critical areas, ensuring they align with evolving societal norms and ethical considerations.\\n\\n### 6. Development of Clinical and Ethical Guidelines\\n\\n**Clinical Protocols:**\\n- For use in healthcare, create clinical guidelines that define the permissible role of AI in decision-making based on context, patient rights, and professional standards.\\n\\n**Ethical Usage Policies:**\\n- Develop clear policies that outline the conditions under which AI can be used in life-and-death scenarios, ensuring that the technology is implemented ethically.\\n\\n### Conclusion\\n\\nBalancing autonomy, accountability, and societal norms in AI decision-making, particularly in life-and-death situations, requires thoughtful integration of ethical principles, stakeholder engagement, transparency, and a dynamic regulatory environment. By taking these steps, we can navigate the complexities involved and work toward ethically sound AI systems that prioritize human welfare and dignity.', \"Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that balances autonomy, accountability, and societal norms. Here's a comprehensive framework to address these challenges:\\n\\n**I. Establish Clear Guidelines and Regulations**\\n\\n1. **Define autonomy boundaries**: Establish clear limits on AI decision-making authority, ensuring that humans are involved in critical decisions.\\n2. **Develop regulations and standards**: Create and enforce regulations, such as those related to transparency, explainability, and accountability, to guide AI development and deployment.\\n3. **Industry-wide collaboration**: Foster collaboration among AI developers, regulators, and stakeholders to establish common standards and best practices.\\n\\n**II. Implement Transparency and Explainability**\\n\\n1. **Model interpretability**: Develop techniques to explain AI decision-making processes, enabling humans to understand the reasoning behind AI-driven choices.\\n2. **Audit trails and logging**: Maintain detailed records of AI decision-making processes, allowing for post-hoc analysis and accountability.\\n3. **Regular model updates and validation**: Ensure that AI models are regularly updated and validated to prevent biases and inaccuracies.\\n\\n**III. Ensure Human Oversight and Review**\\n\\n1. **Human-in-the-loop**: Design AI systems that require human review and approval for critical decisions, particularly in life-and-death situations.\\n2. **Independent review boards**: Establish independent review boards to assess AI decision-making and provide feedback for improvement.\\n3. **Continuous monitoring and evaluation**: Regularly monitor AI performance and evaluate its impact on society, making adjustments as needed.\\n\\n**IV. Address Accountability and Liability**\\n\\n1. **Clear accountability structures**: Establish clear lines of accountability, defining roles and responsibilities for AI decision-making.\\n2. **Liability frameworks**: Develop frameworks to address liability and responsibility in cases where AI decision-making results in harm or damage.\\n3. **Insurance and risk management**: Explore insurance and risk management options to mitigate the financial and reputational risks associated with AI decision-making.\\n\\n**V. Engage with Societal Norms and Values**\\n\\n1. **Public engagement and education**: Engage with the public to raise awareness about AI decision-making and its implications, fostering a broader understanding of the technology.\\n2. **Value alignment**: Ensure that AI systems are designed to align with societal values, such as respect for human life, dignity, and autonomy.\\n3. **Cultural and contextual considerations**: Consider cultural and contextual factors that may influence AI decision-making, adapting AI systems to accommodate diverse perspectives and needs.\\n\\n**VI. Foster a Culture of Responsibility and Continuous Improvement**\\n\\n1. **Ethics-by-design**: Integrate ethical considerations into AI development from the outset, rather than treating ethics as an afterthought.\\n2. **Responsible AI development**: Encourage responsible AI development practices, prioritizing transparency, accountability, and human well-being.\\n3. **Ongoing research and development**: Continuously invest in research and development to improve AI decision-making, addressing emerging challenges and concerns.\\n\\nBy adopting this comprehensive framework, we can work towards resolving the ethical dilemmas of AI decision-making in life-and-death situations, balancing autonomy, accountability, and societal norms to ensure that AI systems serve humanity's best interests.\"]\n"
     ]
    }
   ],
   "source": [
    "# So where are we?\n",
    "\n",
    "print(competitors)\n",
    "print(answers)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Competitor: gpt-4o-mini\n",
      "\n",
      "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that carefully considers autonomy, accountability, and societal norms. Here’s how I would approach this complex issue:\n",
      "\n",
      "### 1. Establish Ethical Frameworks\n",
      "\n",
      "**Utilitarianism vs. Deontological Ethics:** \n",
      "- Utilize a combination of ethical theories to guide AI decision-making. Utilitarianism focuses on the outcomes (the greatest good for the greatest number), while deontological ethics emphasizes duties and principles regardless of outcomes. An integrated approach can provide a more nuanced understanding of ethical dilemmas.\n",
      "\n",
      "**Principles of AI Ethics:**\n",
      "- Develop and follow fundamental principles such as fairness, transparency, accountability, nondiscrimination, and respect for human dignity. These principles can help guide developers and stakeholders in creating AI systems.\n",
      "\n",
      "### 2. Incorporate Stakeholder Perspectives\n",
      "\n",
      "**Engaging Diverse Stakeholders:**\n",
      "- Include a range of perspectives from ethicists, medical professionals, legal experts, sociologists, and the affected communities. This engagement will ensure that the AI systems reflect a broad spectrum of values and considerations.\n",
      "\n",
      "**Public Deliberation:**\n",
      "- Conduct public consultations to gather input from the general populace regarding their values and concerns. This process helps ensure that societal norms and expectations are factored into AI decision-making.\n",
      "\n",
      "### 3. Define Autonomy and Accountability\n",
      "\n",
      "**Respect for Human Autonomy:**\n",
      "- Design AI systems that prioritize human oversight, allowing individuals to retain agency over critical decisions. In life-and-death situations, this may involve allowing human operators to make the final call, especially when emotional and moral considerations are at stake.\n",
      "\n",
      "**Accountability Structures:**\n",
      "- Clearly define who is accountable when AI systems make decisions that lead to life-and-death outcomes. This may involve delineating roles for software developers, healthcare providers, and institutions.\n",
      "\n",
      "**Legal and Regulatory Frameworks:**\n",
      "- Advocate for the establishment of robust legal and regulatory frameworks that define liability for AI decision-making. This framework should specify accountability in cases of errors leading to harm or fatalities.\n",
      "\n",
      "### 4. Transparency and Explainability\n",
      "\n",
      "**Explainable AI (XAI):**\n",
      "- Deploy AI systems that can provide understandable and interpretable reasons for their decisions. In life-and-death scenarios, users must comprehend the rationale behind medical suggestions or emergency responses.\n",
      "\n",
      "**Data and Algorithm Transparency:**\n",
      "- Ensure transparency in data sources and algorithms used in AI systems. Stakeholders should understand how data biases may affect decision-making processes.\n",
      "\n",
      "### 5. Continuous Learning and Adaptation\n",
      "\n",
      "**Feedback Mechanisms:**\n",
      "- Incorporate systems for continuous feedback, allowing for the assessment and revision of AI systems based on real-world outcomes and user experiences.\n",
      "\n",
      "**Ethical Review Boards:**\n",
      "- Establish ethical review boards to regularly evaluate the performance and implications of AI systems in critical areas, ensuring they align with evolving societal norms and ethical considerations.\n",
      "\n",
      "### 6. Development of Clinical and Ethical Guidelines\n",
      "\n",
      "**Clinical Protocols:**\n",
      "- For use in healthcare, create clinical guidelines that define the permissible role of AI in decision-making based on context, patient rights, and professional standards.\n",
      "\n",
      "**Ethical Usage Policies:**\n",
      "- Develop clear policies that outline the conditions under which AI can be used in life-and-death scenarios, ensuring that the technology is implemented ethically.\n",
      "\n",
      "### Conclusion\n",
      "\n",
      "Balancing autonomy, accountability, and societal norms in AI decision-making, particularly in life-and-death situations, requires thoughtful integration of ethical principles, stakeholder engagement, transparency, and a dynamic regulatory environment. By taking these steps, we can navigate the complexities involved and work toward ethically sound AI systems that prioritize human welfare and dignity.\n",
      "Competitor: llama-3.3-70b-versatile\n",
      "\n",
      "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that balances autonomy, accountability, and societal norms. Here's a comprehensive framework to address these challenges:\n",
      "\n",
      "**I. Establish Clear Guidelines and Regulations**\n",
      "\n",
      "1. **Define autonomy boundaries**: Establish clear limits on AI decision-making authority, ensuring that humans are involved in critical decisions.\n",
      "2. **Develop regulations and standards**: Create and enforce regulations, such as those related to transparency, explainability, and accountability, to guide AI development and deployment.\n",
      "3. **Industry-wide collaboration**: Foster collaboration among AI developers, regulators, and stakeholders to establish common standards and best practices.\n",
      "\n",
      "**II. Implement Transparency and Explainability**\n",
      "\n",
      "1. **Model interpretability**: Develop techniques to explain AI decision-making processes, enabling humans to understand the reasoning behind AI-driven choices.\n",
      "2. **Audit trails and logging**: Maintain detailed records of AI decision-making processes, allowing for post-hoc analysis and accountability.\n",
      "3. **Regular model updates and validation**: Ensure that AI models are regularly updated and validated to prevent biases and inaccuracies.\n",
      "\n",
      "**III. Ensure Human Oversight and Review**\n",
      "\n",
      "1. **Human-in-the-loop**: Design AI systems that require human review and approval for critical decisions, particularly in life-and-death situations.\n",
      "2. **Independent review boards**: Establish independent review boards to assess AI decision-making and provide feedback for improvement.\n",
      "3. **Continuous monitoring and evaluation**: Regularly monitor AI performance and evaluate its impact on society, making adjustments as needed.\n",
      "\n",
      "**IV. Address Accountability and Liability**\n",
      "\n",
      "1. **Clear accountability structures**: Establish clear lines of accountability, defining roles and responsibilities for AI decision-making.\n",
      "2. **Liability frameworks**: Develop frameworks to address liability and responsibility in cases where AI decision-making results in harm or damage.\n",
      "3. **Insurance and risk management**: Explore insurance and risk management options to mitigate the financial and reputational risks associated with AI decision-making.\n",
      "\n",
      "**V. Engage with Societal Norms and Values**\n",
      "\n",
      "1. **Public engagement and education**: Engage with the public to raise awareness about AI decision-making and its implications, fostering a broader understanding of the technology.\n",
      "2. **Value alignment**: Ensure that AI systems are designed to align with societal values, such as respect for human life, dignity, and autonomy.\n",
      "3. **Cultural and contextual considerations**: Consider cultural and contextual factors that may influence AI decision-making, adapting AI systems to accommodate diverse perspectives and needs.\n",
      "\n",
      "**VI. Foster a Culture of Responsibility and Continuous Improvement**\n",
      "\n",
      "1. **Ethics-by-design**: Integrate ethical considerations into AI development from the outset, rather than treating ethics as an afterthought.\n",
      "2. **Responsible AI development**: Encourage responsible AI development practices, prioritizing transparency, accountability, and human well-being.\n",
      "3. **Ongoing research and development**: Continuously invest in research and development to improve AI decision-making, addressing emerging challenges and concerns.\n",
      "\n",
      "By adopting this comprehensive framework, we can work towards resolving the ethical dilemmas of AI decision-making in life-and-death situations, balancing autonomy, accountability, and societal norms to ensure that AI systems serve humanity's best interests.\n"
     ]
    }
   ],
   "source": [
    "# It's nice to know how to use \"zip\"\n",
    "for competitor, answer in zip(competitors, answers):\n",
    "    print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's bring this together - note the use of \"enumerate\"\n",
    "\n",
    "together = \"\"\n",
    "for index, answer in enumerate(answers):\n",
    "    together += f\"# Response from competitor {index+1}\\n\\n\"\n",
    "    together += answer + \"\\n\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# Response from competitor 1\n",
      "\n",
      "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that carefully considers autonomy, accountability, and societal norms. Here’s how I would approach this complex issue:\n",
      "\n",
      "### 1. Establish Ethical Frameworks\n",
      "\n",
      "**Utilitarianism vs. Deontological Ethics:** \n",
      "- Utilize a combination of ethical theories to guide AI decision-making. Utilitarianism focuses on the outcomes (the greatest good for the greatest number), while deontological ethics emphasizes duties and principles regardless of outcomes. An integrated approach can provide a more nuanced understanding of ethical dilemmas.\n",
      "\n",
      "**Principles of AI Ethics:**\n",
      "- Develop and follow fundamental principles such as fairness, transparency, accountability, nondiscrimination, and respect for human dignity. These principles can help guide developers and stakeholders in creating AI systems.\n",
      "\n",
      "### 2. Incorporate Stakeholder Perspectives\n",
      "\n",
      "**Engaging Diverse Stakeholders:**\n",
      "- Include a range of perspectives from ethicists, medical professionals, legal experts, sociologists, and the affected communities. This engagement will ensure that the AI systems reflect a broad spectrum of values and considerations.\n",
      "\n",
      "**Public Deliberation:**\n",
      "- Conduct public consultations to gather input from the general populace regarding their values and concerns. This process helps ensure that societal norms and expectations are factored into AI decision-making.\n",
      "\n",
      "### 3. Define Autonomy and Accountability\n",
      "\n",
      "**Respect for Human Autonomy:**\n",
      "- Design AI systems that prioritize human oversight, allowing individuals to retain agency over critical decisions. In life-and-death situations, this may involve allowing human operators to make the final call, especially when emotional and moral considerations are at stake.\n",
      "\n",
      "**Accountability Structures:**\n",
      "- Clearly define who is accountable when AI systems make decisions that lead to life-and-death outcomes. This may involve delineating roles for software developers, healthcare providers, and institutions.\n",
      "\n",
      "**Legal and Regulatory Frameworks:**\n",
      "- Advocate for the establishment of robust legal and regulatory frameworks that define liability for AI decision-making. This framework should specify accountability in cases of errors leading to harm or fatalities.\n",
      "\n",
      "### 4. Transparency and Explainability\n",
      "\n",
      "**Explainable AI (XAI):**\n",
      "- Deploy AI systems that can provide understandable and interpretable reasons for their decisions. In life-and-death scenarios, users must comprehend the rationale behind medical suggestions or emergency responses.\n",
      "\n",
      "**Data and Algorithm Transparency:**\n",
      "- Ensure transparency in data sources and algorithms used in AI systems. Stakeholders should understand how data biases may affect decision-making processes.\n",
      "\n",
      "### 5. Continuous Learning and Adaptation\n",
      "\n",
      "**Feedback Mechanisms:**\n",
      "- Incorporate systems for continuous feedback, allowing for the assessment and revision of AI systems based on real-world outcomes and user experiences.\n",
      "\n",
      "**Ethical Review Boards:**\n",
      "- Establish ethical review boards to regularly evaluate the performance and implications of AI systems in critical areas, ensuring they align with evolving societal norms and ethical considerations.\n",
      "\n",
      "### 6. Development of Clinical and Ethical Guidelines\n",
      "\n",
      "**Clinical Protocols:**\n",
      "- For use in healthcare, create clinical guidelines that define the permissible role of AI in decision-making based on context, patient rights, and professional standards.\n",
      "\n",
      "**Ethical Usage Policies:**\n",
      "- Develop clear policies that outline the conditions under which AI can be used in life-and-death scenarios, ensuring that the technology is implemented ethically.\n",
      "\n",
      "### Conclusion\n",
      "\n",
      "Balancing autonomy, accountability, and societal norms in AI decision-making, particularly in life-and-death situations, requires thoughtful integration of ethical principles, stakeholder engagement, transparency, and a dynamic regulatory environment. By taking these steps, we can navigate the complexities involved and work toward ethically sound AI systems that prioritize human welfare and dignity.\n",
      "\n",
      "# Response from competitor 2\n",
      "\n",
      "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that balances autonomy, accountability, and societal norms. Here's a comprehensive framework to address these challenges:\n",
      "\n",
      "**I. Establish Clear Guidelines and Regulations**\n",
      "\n",
      "1. **Define autonomy boundaries**: Establish clear limits on AI decision-making authority, ensuring that humans are involved in critical decisions.\n",
      "2. **Develop regulations and standards**: Create and enforce regulations, such as those related to transparency, explainability, and accountability, to guide AI development and deployment.\n",
      "3. **Industry-wide collaboration**: Foster collaboration among AI developers, regulators, and stakeholders to establish common standards and best practices.\n",
      "\n",
      "**II. Implement Transparency and Explainability**\n",
      "\n",
      "1. **Model interpretability**: Develop techniques to explain AI decision-making processes, enabling humans to understand the reasoning behind AI-driven choices.\n",
      "2. **Audit trails and logging**: Maintain detailed records of AI decision-making processes, allowing for post-hoc analysis and accountability.\n",
      "3. **Regular model updates and validation**: Ensure that AI models are regularly updated and validated to prevent biases and inaccuracies.\n",
      "\n",
      "**III. Ensure Human Oversight and Review**\n",
      "\n",
      "1. **Human-in-the-loop**: Design AI systems that require human review and approval for critical decisions, particularly in life-and-death situations.\n",
      "2. **Independent review boards**: Establish independent review boards to assess AI decision-making and provide feedback for improvement.\n",
      "3. **Continuous monitoring and evaluation**: Regularly monitor AI performance and evaluate its impact on society, making adjustments as needed.\n",
      "\n",
      "**IV. Address Accountability and Liability**\n",
      "\n",
      "1. **Clear accountability structures**: Establish clear lines of accountability, defining roles and responsibilities for AI decision-making.\n",
      "2. **Liability frameworks**: Develop frameworks to address liability and responsibility in cases where AI decision-making results in harm or damage.\n",
      "3. **Insurance and risk management**: Explore insurance and risk management options to mitigate the financial and reputational risks associated with AI decision-making.\n",
      "\n",
      "**V. Engage with Societal Norms and Values**\n",
      "\n",
      "1. **Public engagement and education**: Engage with the public to raise awareness about AI decision-making and its implications, fostering a broader understanding of the technology.\n",
      "2. **Value alignment**: Ensure that AI systems are designed to align with societal values, such as respect for human life, dignity, and autonomy.\n",
      "3. **Cultural and contextual considerations**: Consider cultural and contextual factors that may influence AI decision-making, adapting AI systems to accommodate diverse perspectives and needs.\n",
      "\n",
      "**VI. Foster a Culture of Responsibility and Continuous Improvement**\n",
      "\n",
      "1. **Ethics-by-design**: Integrate ethical considerations into AI development from the outset, rather than treating ethics as an afterthought.\n",
      "2. **Responsible AI development**: Encourage responsible AI development practices, prioritizing transparency, accountability, and human well-being.\n",
      "3. **Ongoing research and development**: Continuously invest in research and development to improve AI decision-making, addressing emerging challenges and concerns.\n",
      "\n",
      "By adopting this comprehensive framework, we can work towards resolving the ethical dilemmas of AI decision-making in life-and-death situations, balancing autonomy, accountability, and societal norms to ensure that AI systems serve humanity's best interests.\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(together)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
    "Each model has been given this question:\n",
    "\n",
    "{question}\n",
    "\n",
    "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
    "Respond with JSON, and only JSON, with the following format:\n",
    "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
    "\n",
    "Here are the responses from each competitor:\n",
    "\n",
    "{together}\n",
    "\n",
    "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "You are judging a competition between 2 competitors.\n",
      "Each model has been given this question:\n",
      "\n",
      "How would you approach resolving the ethical dilemmas of AI decision-making in life-and-death situations, balancing autonomy, accountability, and societal norms?\n",
      "\n",
      "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
      "Respond with JSON, and only JSON, with the following format:\n",
      "{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}\n",
      "\n",
      "Here are the responses from each competitor:\n",
      "\n",
      "# Response from competitor 1\n",
      "\n",
      "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that carefully considers autonomy, accountability, and societal norms. Here’s how I would approach this complex issue:\n",
      "\n",
      "### 1. Establish Ethical Frameworks\n",
      "\n",
      "**Utilitarianism vs. Deontological Ethics:** \n",
      "- Utilize a combination of ethical theories to guide AI decision-making. Utilitarianism focuses on the outcomes (the greatest good for the greatest number), while deontological ethics emphasizes duties and principles regardless of outcomes. An integrated approach can provide a more nuanced understanding of ethical dilemmas.\n",
      "\n",
      "**Principles of AI Ethics:**\n",
      "- Develop and follow fundamental principles such as fairness, transparency, accountability, nondiscrimination, and respect for human dignity. These principles can help guide developers and stakeholders in creating AI systems.\n",
      "\n",
      "### 2. Incorporate Stakeholder Perspectives\n",
      "\n",
      "**Engaging Diverse Stakeholders:**\n",
      "- Include a range of perspectives from ethicists, medical professionals, legal experts, sociologists, and the affected communities. This engagement will ensure that the AI systems reflect a broad spectrum of values and considerations.\n",
      "\n",
      "**Public Deliberation:**\n",
      "- Conduct public consultations to gather input from the general populace regarding their values and concerns. This process helps ensure that societal norms and expectations are factored into AI decision-making.\n",
      "\n",
      "### 3. Define Autonomy and Accountability\n",
      "\n",
      "**Respect for Human Autonomy:**\n",
      "- Design AI systems that prioritize human oversight, allowing individuals to retain agency over critical decisions. In life-and-death situations, this may involve allowing human operators to make the final call, especially when emotional and moral considerations are at stake.\n",
      "\n",
      "**Accountability Structures:**\n",
      "- Clearly define who is accountable when AI systems make decisions that lead to life-and-death outcomes. This may involve delineating roles for software developers, healthcare providers, and institutions.\n",
      "\n",
      "**Legal and Regulatory Frameworks:**\n",
      "- Advocate for the establishment of robust legal and regulatory frameworks that define liability for AI decision-making. This framework should specify accountability in cases of errors leading to harm or fatalities.\n",
      "\n",
      "### 4. Transparency and Explainability\n",
      "\n",
      "**Explainable AI (XAI):**\n",
      "- Deploy AI systems that can provide understandable and interpretable reasons for their decisions. In life-and-death scenarios, users must comprehend the rationale behind medical suggestions or emergency responses.\n",
      "\n",
      "**Data and Algorithm Transparency:**\n",
      "- Ensure transparency in data sources and algorithms used in AI systems. Stakeholders should understand how data biases may affect decision-making processes.\n",
      "\n",
      "### 5. Continuous Learning and Adaptation\n",
      "\n",
      "**Feedback Mechanisms:**\n",
      "- Incorporate systems for continuous feedback, allowing for the assessment and revision of AI systems based on real-world outcomes and user experiences.\n",
      "\n",
      "**Ethical Review Boards:**\n",
      "- Establish ethical review boards to regularly evaluate the performance and implications of AI systems in critical areas, ensuring they align with evolving societal norms and ethical considerations.\n",
      "\n",
      "### 6. Development of Clinical and Ethical Guidelines\n",
      "\n",
      "**Clinical Protocols:**\n",
      "- For use in healthcare, create clinical guidelines that define the permissible role of AI in decision-making based on context, patient rights, and professional standards.\n",
      "\n",
      "**Ethical Usage Policies:**\n",
      "- Develop clear policies that outline the conditions under which AI can be used in life-and-death scenarios, ensuring that the technology is implemented ethically.\n",
      "\n",
      "### Conclusion\n",
      "\n",
      "Balancing autonomy, accountability, and societal norms in AI decision-making, particularly in life-and-death situations, requires thoughtful integration of ethical principles, stakeholder engagement, transparency, and a dynamic regulatory environment. By taking these steps, we can navigate the complexities involved and work toward ethically sound AI systems that prioritize human welfare and dignity.\n",
      "\n",
      "# Response from competitor 2\n",
      "\n",
      "Resolving the ethical dilemmas of AI decision-making in life-and-death situations requires a multifaceted approach that balances autonomy, accountability, and societal norms. Here's a comprehensive framework to address these challenges:\n",
      "\n",
      "**I. Establish Clear Guidelines and Regulations**\n",
      "\n",
      "1. **Define autonomy boundaries**: Establish clear limits on AI decision-making authority, ensuring that humans are involved in critical decisions.\n",
      "2. **Develop regulations and standards**: Create and enforce regulations, such as those related to transparency, explainability, and accountability, to guide AI development and deployment.\n",
      "3. **Industry-wide collaboration**: Foster collaboration among AI developers, regulators, and stakeholders to establish common standards and best practices.\n",
      "\n",
      "**II. Implement Transparency and Explainability**\n",
      "\n",
      "1. **Model interpretability**: Develop techniques to explain AI decision-making processes, enabling humans to understand the reasoning behind AI-driven choices.\n",
      "2. **Audit trails and logging**: Maintain detailed records of AI decision-making processes, allowing for post-hoc analysis and accountability.\n",
      "3. **Regular model updates and validation**: Ensure that AI models are regularly updated and validated to prevent biases and inaccuracies.\n",
      "\n",
      "**III. Ensure Human Oversight and Review**\n",
      "\n",
      "1. **Human-in-the-loop**: Design AI systems that require human review and approval for critical decisions, particularly in life-and-death situations.\n",
      "2. **Independent review boards**: Establish independent review boards to assess AI decision-making and provide feedback for improvement.\n",
      "3. **Continuous monitoring and evaluation**: Regularly monitor AI performance and evaluate its impact on society, making adjustments as needed.\n",
      "\n",
      "**IV. Address Accountability and Liability**\n",
      "\n",
      "1. **Clear accountability structures**: Establish clear lines of accountability, defining roles and responsibilities for AI decision-making.\n",
      "2. **Liability frameworks**: Develop frameworks to address liability and responsibility in cases where AI decision-making results in harm or damage.\n",
      "3. **Insurance and risk management**: Explore insurance and risk management options to mitigate the financial and reputational risks associated with AI decision-making.\n",
      "\n",
      "**V. Engage with Societal Norms and Values**\n",
      "\n",
      "1. **Public engagement and education**: Engage with the public to raise awareness about AI decision-making and its implications, fostering a broader understanding of the technology.\n",
      "2. **Value alignment**: Ensure that AI systems are designed to align with societal values, such as respect for human life, dignity, and autonomy.\n",
      "3. **Cultural and contextual considerations**: Consider cultural and contextual factors that may influence AI decision-making, adapting AI systems to accommodate diverse perspectives and needs.\n",
      "\n",
      "**VI. Foster a Culture of Responsibility and Continuous Improvement**\n",
      "\n",
      "1. **Ethics-by-design**: Integrate ethical considerations into AI development from the outset, rather than treating ethics as an afterthought.\n",
      "2. **Responsible AI development**: Encourage responsible AI development practices, prioritizing transparency, accountability, and human well-being.\n",
      "3. **Ongoing research and development**: Continuously invest in research and development to improve AI decision-making, addressing emerging challenges and concerns.\n",
      "\n",
      "By adopting this comprehensive framework, we can work towards resolving the ethical dilemmas of AI decision-making in life-and-death situations, balancing autonomy, accountability, and societal norms to ensure that AI systems serve humanity's best interests.\n",
      "\n",
      "\n",
      "\n",
      "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\n"
     ]
    }
   ],
   "source": [
    "print(judge)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\"results\": [\"1\", \"2\"]}\n"
     ]
    }
   ],
   "source": [
    "# Judgement time!\n",
    "\n",
    "openai = OpenAI()\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"o3-mini\",\n",
    "    messages=judge_messages,\n",
    ")\n",
    "results = response.choices[0].message.content\n",
    "print(results)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Rank 1: gpt-4o-mini\n",
      "Rank 2: llama-3.3-70b-versatile\n"
     ]
    }
   ],
   "source": [
    "# OK let's turn this into results!\n",
    "\n",
    "results_dict = json.loads(results)\n",
    "ranks = results_dict[\"results\"]\n",
    "for index, result in enumerate(ranks):\n",
    "    competitor = competitors[int(result)-1]\n",
    "    print(f\"Rank {index+1}: {competitor}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
    "            <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
    "            <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
    "            are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
    "            to business projects where accuracy is critical.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}