gnosticdev commited on
Commit
587b534
·
verified ·
1 Parent(s): b1d64a8

Update conver.py

Browse files
Files changed (1) hide show
  1. conver.py +57 -85
conver.py CHANGED
@@ -1,15 +1,14 @@
1
  from dataclasses import dataclass
2
  from typing import List, Tuple, Dict
3
  import os
4
- import httpx
5
  import json
 
6
  from openai import OpenAI
7
  import edge_tts
8
  import tempfile
9
  from pydub import AudioSegment
10
  import base64
11
  from pathlib import Path
12
- import time
13
 
14
  @dataclass
15
  class ConversationConfig:
@@ -18,22 +17,14 @@ class ConversationConfig:
18
  model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
19
 
20
  class URLToAudioConverter:
21
- BASE_OUTPUT_DIR = "outputs"
22
-
23
  def __init__(self, config: ConversationConfig, llm_api_key: str):
24
  self.config = config
25
  self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
26
  self.llm_out = None
27
- self._ensure_base_output_dir()
28
-
29
- def _ensure_base_output_dir(self):
30
- if not os.path.exists(self.BASE_OUTPUT_DIR):
31
- os.makedirs(self.BASE_OUTPUT_DIR, exist_ok=True)
32
 
33
  def fetch_text(self, url: str) -> str:
34
  if not url:
35
  raise ValueError("URL cannot be empty")
36
-
37
  full_url = f"{self.config.prefix_url}{url}"
38
  try:
39
  response = httpx.get(full_url, timeout=60.0)
@@ -45,33 +36,27 @@ class URLToAudioConverter:
45
  def extract_conversation(self, text: str) -> Dict:
46
  if not text:
47
  raise ValueError("Input text cannot be empty")
48
-
49
  try:
50
  prompt = (
51
  f"{text}\nConvert the provided text into a short informative podcast conversation "
52
  f"between two experts. Return ONLY a JSON object with the following structure:\n"
53
  '{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
54
  )
55
-
56
  chat_completion = self.llm_client.chat.completions.create(
57
  messages=[{"role": "user", "content": prompt}],
58
  model=self.config.model_name,
59
  response_format={"type": "json_object"}
60
  )
61
-
62
  response_content = chat_completion.choices[0].message.content
63
  json_str = response_content.strip()
64
-
65
  if not json_str.startswith('{'):
66
  start = json_str.find('{')
67
  if start != -1:
68
  json_str = json_str[start:]
69
-
70
  if not json_str.endswith('}'):
71
  end = json_str.rfind('}')
72
  if end != -1:
73
  json_str = json_str[:end+1]
74
-
75
  return json.loads(json_str)
76
  except Exception as e:
77
  print(f"Error en extract_conversation: {str(e)}")
@@ -81,19 +66,15 @@ class URLToAudioConverter:
81
  async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
82
  output_dir = Path(self._create_output_directory())
83
  filenames = []
84
-
85
  try:
86
  for i, turn in enumerate(conversation_json["conversation"]):
87
  filename = output_dir / f"output_{i}.mp3"
88
  voice = voice_1 if i % 2 == 0 else voice_2
89
-
90
  tmp_path, error = await self._generate_audio(turn["text"], voice)
91
  if error:
92
  raise RuntimeError(f"Text-to-speech failed: {error}")
93
-
94
  os.rename(tmp_path, filename)
95
  filenames.append(str(filename))
96
-
97
  return filenames, str(output_dir)
98
  except Exception as e:
99
  raise RuntimeError(f"Failed to convert text to speech: {e}")
@@ -103,110 +84,101 @@ class URLToAudioConverter:
103
  return None, "Text cannot be empty"
104
  if not voice:
105
  return None, "Voice cannot be empty"
106
-
107
  voice_short_name = voice.split(" - ")[0]
108
  rate_str = f"{rate:+d}%"
109
  pitch_str = f"{pitch:+d}Hz"
110
  communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
111
-
112
  with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
113
  tmp_path = tmp_file.name
114
  await communicate.save(tmp_path)
115
-
116
  return tmp_path, None
117
 
118
  def _create_output_directory(self) -> str:
119
- # Crear carpeta única dentro de outputs/
120
  random_bytes = os.urandom(8)
121
- folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8").rstrip("=")
122
- full_path = os.path.join(self.BASE_OUTPUT_DIR, f"podcast_{folder_name}")
123
- os.makedirs(full_path, exist_ok=True)
124
- return full_path
125
 
126
- def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
127
  if not filenames:
128
  raise ValueError("No input files provided")
129
-
130
  try:
131
  combined = AudioSegment.empty()
132
  for filename in filenames:
133
  audio_segment = AudioSegment.from_file(filename, format="mp3")
134
  combined += audio_segment
135
-
136
- combined.export(output_file, format="mp3")
137
-
138
- # NO eliminar archivos aquí. Solo en limpieza periódica.
139
-
140
  except Exception as e:
141
  raise RuntimeError(f"Failed to combine audio files: {e}")
142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
  async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
144
  text = self.fetch_text(url)
145
-
146
  words = text.split()
147
  if len(words) > self.config.max_words:
148
  text = " ".join(words[:self.config.max_words])
149
-
150
  conversation_json = self.extract_conversation(text)
151
  conversation_text = "\n".join(
152
  f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
153
  )
154
  self.llm_out = conversation_json
155
- audio_files, folder_name = await self.text_to_speech(
156
- conversation_json, voice_1, voice_2
157
- )
158
-
159
- final_output = os.path.join(folder_name, "combined_output.mp3")
160
- self.combine_audio_files(audio_files, final_output)
 
 
 
161
  return final_output, conversation_text
162
 
163
  async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
164
- """Procesamiento normal con LLM"""
165
  conversation_json = self.extract_conversation(text)
166
  conversation_text = "\n".join(
167
  f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
168
  )
169
- audio_files, folder_name = await self.text_to_speech(
170
- conversation_json, voice_1, voice_2
171
- )
172
- final_output = os.path.join(folder_name, "combined_output.mp3")
173
- self.combine_audio_files(audio_files, final_output)
 
 
 
 
174
  return final_output, conversation_text
175
 
176
  async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
177
- """Modo sin LLM (texto directo), convierte el texto en conversación simple y genera audio."""
178
- conversation = {
179
- "conversation": [
180
- {"speaker": "Host", "text": text},
181
- {"speaker": "Co-host", "text": "(Continuación del tema)"}
182
- ]
183
- }
184
- audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
185
- output_file = os.path.join(folder_name, "raw_podcast.mp3")
186
- self.combine_audio_files(audio_files, output_file)
187
- # DEVUELVE (ruta_audio, texto) para que Gradio lo use bien
188
- return output_file, text
189
-
190
-
191
- def clean_old_files(self, max_age_seconds=86400):
192
- """
193
- Borra carpetas y archivos en BASE_OUTPUT_DIR que tengan más de max_age_seconds (por defecto 24h)
194
- """
195
- if not os.path.exists(self.BASE_OUTPUT_DIR):
196
- return
197
- now = time.time()
198
- for folder in os.listdir(self.BASE_OUTPUT_DIR):
199
- folder_path = os.path.join(self.BASE_OUTPUT_DIR, folder)
200
- if os.path.isdir(folder_path):
201
- try:
202
- mtime = os.path.getmtime(folder_path)
203
- if now - mtime > max_age_seconds:
204
- # Borramos carpeta completa
205
- for root, dirs, files in os.walk(folder_path, topdown=False):
206
- for name in files:
207
- os.remove(os.path.join(root, name))
208
- for name in dirs:
209
- os.rmdir(os.path.join(root, name))
210
- os.rmdir(folder_path)
211
- except Exception:
212
- pass
 
1
  from dataclasses import dataclass
2
  from typing import List, Tuple, Dict
3
  import os
 
4
  import json
5
+ import httpx
6
  from openai import OpenAI
7
  import edge_tts
8
  import tempfile
9
  from pydub import AudioSegment
10
  import base64
11
  from pathlib import Path
 
12
 
13
  @dataclass
14
  class ConversationConfig:
 
17
  model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
18
 
19
  class URLToAudioConverter:
 
 
20
  def __init__(self, config: ConversationConfig, llm_api_key: str):
21
  self.config = config
22
  self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
23
  self.llm_out = None
 
 
 
 
 
24
 
25
  def fetch_text(self, url: str) -> str:
26
  if not url:
27
  raise ValueError("URL cannot be empty")
 
28
  full_url = f"{self.config.prefix_url}{url}"
29
  try:
30
  response = httpx.get(full_url, timeout=60.0)
 
36
  def extract_conversation(self, text: str) -> Dict:
37
  if not text:
38
  raise ValueError("Input text cannot be empty")
 
39
  try:
40
  prompt = (
41
  f"{text}\nConvert the provided text into a short informative podcast conversation "
42
  f"between two experts. Return ONLY a JSON object with the following structure:\n"
43
  '{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
44
  )
 
45
  chat_completion = self.llm_client.chat.completions.create(
46
  messages=[{"role": "user", "content": prompt}],
47
  model=self.config.model_name,
48
  response_format={"type": "json_object"}
49
  )
 
50
  response_content = chat_completion.choices[0].message.content
51
  json_str = response_content.strip()
 
52
  if not json_str.startswith('{'):
53
  start = json_str.find('{')
54
  if start != -1:
55
  json_str = json_str[start:]
 
56
  if not json_str.endswith('}'):
57
  end = json_str.rfind('}')
58
  if end != -1:
59
  json_str = json_str[:end+1]
 
60
  return json.loads(json_str)
61
  except Exception as e:
62
  print(f"Error en extract_conversation: {str(e)}")
 
66
  async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
67
  output_dir = Path(self._create_output_directory())
68
  filenames = []
 
69
  try:
70
  for i, turn in enumerate(conversation_json["conversation"]):
71
  filename = output_dir / f"output_{i}.mp3"
72
  voice = voice_1 if i % 2 == 0 else voice_2
 
73
  tmp_path, error = await self._generate_audio(turn["text"], voice)
74
  if error:
75
  raise RuntimeError(f"Text-to-speech failed: {error}")
 
76
  os.rename(tmp_path, filename)
77
  filenames.append(str(filename))
 
78
  return filenames, str(output_dir)
79
  except Exception as e:
80
  raise RuntimeError(f"Failed to convert text to speech: {e}")
 
84
  return None, "Text cannot be empty"
85
  if not voice:
86
  return None, "Voice cannot be empty"
 
87
  voice_short_name = voice.split(" - ")[0]
88
  rate_str = f"{rate:+d}%"
89
  pitch_str = f"{pitch:+d}Hz"
90
  communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
 
91
  with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
92
  tmp_path = tmp_file.name
93
  await communicate.save(tmp_path)
 
94
  return tmp_path, None
95
 
96
  def _create_output_directory(self) -> str:
 
97
  random_bytes = os.urandom(8)
98
+ folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
99
+ os.makedirs(folder_name, exist_ok=True)
100
+ return folder_name
 
101
 
102
+ def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
103
  if not filenames:
104
  raise ValueError("No input files provided")
 
105
  try:
106
  combined = AudioSegment.empty()
107
  for filename in filenames:
108
  audio_segment = AudioSegment.from_file(filename, format="mp3")
109
  combined += audio_segment
110
+ return combined
 
 
 
 
111
  except Exception as e:
112
  raise RuntimeError(f"Failed to combine audio files: {e}")
113
 
114
+ def add_background_music_and_tags(
115
+ self, speech_audio: AudioSegment, music_file: str, tags_files: List[str]
116
+ ) -> AudioSegment:
117
+ music = AudioSegment.from_file(music_file)
118
+ if len(music) < len(speech_audio):
119
+ loops = (len(speech_audio) // len(music)) + 1
120
+ music = music * loops
121
+ music = music[:len(speech_audio)] - 20 # bajar volumen música
122
+ mixed = speech_audio.overlay(music)
123
+ for i, tag_path in enumerate(tags_files):
124
+ tag_audio = AudioSegment.from_file(tag_path) - 5
125
+ if i == 0:
126
+ mixed = tag_audio + mixed
127
+ else:
128
+ mixed = mixed + tag_audio
129
+ return mixed
130
+
131
  async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
132
  text = self.fetch_text(url)
 
133
  words = text.split()
134
  if len(words) > self.config.max_words:
135
  text = " ".join(words[:self.config.max_words])
 
136
  conversation_json = self.extract_conversation(text)
137
  conversation_text = "\n".join(
138
  f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
139
  )
140
  self.llm_out = conversation_json
141
+ audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
142
+ combined_audio = self.combine_audio_files(audio_files)
143
+ music_path = "assets/musica.mp3"
144
+ tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"]
145
+ final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths)
146
+ final_output = os.path.join(folder_name, "combined_output_with_music.mp3")
147
+ final_audio.export(final_output, format="mp3")
148
+ for f in audio_files:
149
+ os.remove(f)
150
  return final_output, conversation_text
151
 
152
  async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
 
153
  conversation_json = self.extract_conversation(text)
154
  conversation_text = "\n".join(
155
  f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
156
  )
157
+ audio_files, folder_name = await self.text_to_speech(conversation_json, voice_1, voice_2)
158
+ combined_audio = self.combine_audio_files(audio_files)
159
+ music_path = "assets/musica.mp3"
160
+ tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"]
161
+ final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths)
162
+ final_output = os.path.join(folder_name, "combined_output_with_music.mp3")
163
+ final_audio.export(final_output, format="mp3")
164
+ for f in audio_files:
165
+ os.remove(f)
166
  return final_output, conversation_text
167
 
168
  async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
169
+ conversation = {
170
+ "conversation": [
171
+ {"speaker": "Host", "text": text},
172
+ {"speaker": "Co-host", "text": "(Continuación del tema)"}
173
+ ]
174
+ }
175
+ audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
176
+ combined_audio = self.combine_audio_files(audio_files)
177
+ music_path = "assets/musica.mp3"
178
+ tags_paths = ["assets/tag.mp3", "assets/tag2.mp3"]
179
+ final_audio = self.add_background_music_and_tags(combined_audio, music_path, tags_paths)
180
+ output_file = os.path.join(folder_name, "raw_podcast_with_music.mp3")
181
+ final_audio.export(output_file, format="mp3")
182
+ for f in audio_files:
183
+ os.remove(f)
184
+ return text, output_file