Spaces:
Running
Running
from dataclasses import dataclass | |
from typing import List, Tuple, Dict | |
import os | |
import httpx | |
import json | |
from openai import OpenAI | |
import edge_tts | |
import tempfile | |
from pydub import AudioSegment | |
import base64 | |
from pathlib import Path | |
import time | |
class ConversationConfig: | |
max_words: int = 3000 | |
prefix_url: str = "https://r.jina.ai/" | |
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" | |
class URLToAudioConverter: | |
BASE_OUTPUT_DIR = "outputs" | |
def __init__(self, config: ConversationConfig, llm_api_key: str): | |
self.config = config | |
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1") | |
self.llm_out = None | |
self._ensure_base_output_dir() | |
def _ensure_base_output_dir(self): | |
if not os.path.exists(self.BASE_OUTPUT_DIR): | |
os.makedirs(self.BASE_OUTPUT_DIR, exist_ok=True) | |
def fetch_text(self, url: str) -> str: | |
if not url: | |
raise ValueError("URL cannot be empty") | |
full_url = f"{self.config.prefix_url}{url}" | |
try: | |
response = httpx.get(full_url, timeout=60.0) | |
response.raise_for_status() | |
return response.text | |
except httpx.HTTPError as e: | |
raise RuntimeError(f"Failed to fetch URL: {e}") | |
def extract_conversation(self, text: str) -> Dict: | |
if not text: | |
raise ValueError("Input text cannot be empty") | |
try: | |
prompt = ( | |
f"{text}\nConvert the provided text into a short informative podcast conversation " | |
f"between two experts. Return ONLY a JSON object with the following structure:\n" | |
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}' | |
) | |
chat_completion = self.llm_client.chat.completions.create( | |
messages=[{"role": "user", "content": prompt}], | |
model=self.config.model_name, | |
response_format={"type": "json_object"} | |
) | |
response_content = chat_completion.choices[0].message.content | |
json_str = response_content.strip() | |
if not json_str.startswith('{'): | |
start = json_str.find('{') | |
if start != -1: | |
json_str = json_str[start:] | |
if not json_str.endswith('}'): | |
end = json_str.rfind('}') | |
if end != -1: | |
json_str = json_str[:end+1] | |
return json.loads(json_str) | |
except Exception as e: | |
print(f"Error en extract_conversation: {str(e)}") | |
print(f"Respuesta del modelo: {response_content}") | |
raise RuntimeError(f"Failed to extract conversation: {str(e)}") | |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]: | |
output_dir = Path(self._create_output_directory()) | |
filenames = [] | |
try: | |
for i, turn in enumerate(conversation_json["conversation"]): | |
filename = output_dir / f"output_{i}.mp3" | |
voice = voice_1 if i % 2 == 0 else voice_2 | |
tmp_path, error = await self._generate_audio(turn["text"], voice) | |
if error: | |
raise RuntimeError(f"Text-to-speech failed: {error}") | |
os.rename(tmp_path, filename) | |
filenames.append(str(filename)) | |
return filenames, str(output_dir) | |
except Exception as e: | |
raise RuntimeError(f"Failed to convert text to speech: {e}") | |
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]: | |
if not text.strip(): | |
return None, "Text cannot be empty" | |
if not voice: | |
return None, "Voice cannot be empty" | |
voice_short_name = voice.split(" - ")[0] | |
rate_str = f"{rate:+d}%" | |
pitch_str = f"{pitch:+d}Hz" | |
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path, None | |
def _create_output_directory(self) -> str: | |
# Crear carpeta única dentro de outputs/ | |
random_bytes = os.urandom(8) | |
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8").rstrip("=") | |
full_path = os.path.join(self.BASE_OUTPUT_DIR, f"podcast_{folder_name}") | |
os.makedirs(full_path, exist_ok=True) | |
return full_path | |
def combine_audio_files(self, filenames: List[str], output_file: str) -> None: | |
if not filenames: | |
raise ValueError("No input files provided") | |
try: | |
combined = AudioSegment.empty() | |
for filename in filenames: | |
audio_segment = AudioSegment.from_file(filename, format="mp3") | |
combined += audio_segment | |
combined.export(output_file, format="mp3") | |
# NO eliminar archivos aquí. Solo en limpieza periódica. | |
except Exception as e: | |
raise RuntimeError(f"Failed to combine audio files: {e}") | |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]: | |
text = self.fetch_text(url) | |
words = text.split() | |
if len(words) > self.config.max_words: | |
text = " ".join(words[:self.config.max_words]) | |
conversation_json = self.extract_conversation(text) | |
conversation_text = "\n".join( | |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"] | |
) | |
self.llm_out = conversation_json | |
audio_files, folder_name = await self.text_to_speech( | |
conversation_json, voice_1, voice_2 | |
) | |
final_output = os.path.join(folder_name, "combined_output.mp3") | |
self.combine_audio_files(audio_files, final_output) | |
return final_output, conversation_text | |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]: | |
"""Procesamiento normal con LLM""" | |
conversation_json = self.extract_conversation(text) | |
conversation_text = "\n".join( | |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"] | |
) | |
audio_files, folder_name = await self.text_to_speech( | |
conversation_json, voice_1, voice_2 | |
) | |
final_output = os.path.join(folder_name, "combined_output.mp3") | |
self.combine_audio_files(audio_files, final_output) | |
return final_output, conversation_text | |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]: | |
"""Modo sin LLM (texto directo)""" | |
conversation = { | |
"conversation": [ | |
{"speaker": "Host", "text": text}, | |
{"speaker": "Co-host", "text": "(Continuación del tema)"} | |
] | |
} | |
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2) | |
output_file = os.path.join(folder_name, "raw_podcast.mp3") | |
self.combine_audio_files(audio_files, output_file) | |
return text, output_file | |
def clean_old_files(self, max_age_seconds=86400): | |
""" | |
Borra carpetas y archivos en BASE_OUTPUT_DIR que tengan más de max_age_seconds (por defecto 24h) | |
""" | |
if not os.path.exists(self.BASE_OUTPUT_DIR): | |
return | |
now = time.time() | |
for folder in os.listdir(self.BASE_OUTPUT_DIR): | |
folder_path = os.path.join(self.BASE_OUTPUT_DIR, folder) | |
if os.path.isdir(folder_path): | |
try: | |
mtime = os.path.getmtime(folder_path) | |
if now - mtime > max_age_seconds: | |
# Borramos carpeta completa | |
for root, dirs, files in os.walk(folder_path, topdown=False): | |
for name in files: | |
os.remove(os.path.join(root, name)) | |
for name in dirs: | |
os.rmdir(os.path.join(root, name)) | |
os.rmdir(folder_path) | |
except Exception: | |
pass | |