Podcastking2 / conver.py
gnosticdev's picture
Update conver.py
b70012c verified
raw
history blame
8.64 kB
from dataclasses import dataclass
from typing import List, Tuple, Dict
import os
import json
import httpx
from openai import OpenAI
import edge_tts
import tempfile
from pydub import AudioSegment
import base64
from pathlib import Path
import time
from threading import Thread
@dataclass
class ConversationConfig:
max_words: int = 3000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Llama-3-8b-chat-hf"
custom_prompt_template: str = None
class URLToAudioConverter:
def __init__(self, config: ConversationConfig, llm_api_key: str):
self.config = config
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
self.llm_out = None
self._start_cleaner()
def _start_cleaner(self, max_age_hours: int = 24):
def cleaner():
while True:
now = time.time()
for root, _, files in os.walk("."):
for file in files:
if file.endswith((".mp3", ".wav")):
filepath = os.path.join(root, file)
try:
if now - os.path.getmtime(filepath) > max_age_hours * 3600:
os.remove(filepath)
except:
pass
time.sleep(3600)
Thread(target=cleaner, daemon=True).start()
def fetch_text(self, url: str) -> str:
if not url:
raise ValueError("URL cannot be empty")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_conversation(self, text: str) -> Dict:
if not text:
raise ValueError("Input text cannot be empty")
try:
prompt = self.config.custom_prompt_template.format(text=text) if self.config.custom_prompt_template else (
f"{text}\nConvierte el texto en un diálogo de podcast en español entre Anfitrión1 y Anfitrión2. "
f"Genera una conversación extensa y natural con al menos 5 intercambios por hablante. "
f"Devuelve SOLO un objeto JSON: "
f'{{"conversation": [{{"speaker": "Anfitrión1", "text": "..."}}, {{"speaker": "Anfitrión2", "text": "..."}}]}}'
)
print(f"Texto de entrada: {text[:200]}...")
response = self.llm_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=self.config.model_name,
response_format={"type": "json_object"}
)
response_content = response.choices[0].message.content
print(f"Respuesta cruda del modelo: {response_content[:500]}...")
json_str = response_content.strip()
if not json_str.startswith('{'):
json_str = json_str[json_str.find('{'):]
if not json_str.endswith('}'):
json_str = json_str[:json_str.rfind('}')+1]
dialogue = json.loads(json_str)
if not dialogue.get("conversation"):
print("Error: No se generó diálogo válido.")
return dialogue
except Exception as e:
raise RuntimeError(f"Failed to parse dialogue: {str(e)}")
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
output_dir = Path(self._create_output_directory())
filenames = []
try:
if not conversation_json["conversation"]:
raise ValueError("No conversation data to process")
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"segment_{i}.mp3"
voice = voice_1 if turn["speaker"] == "Anfitrión1" else voice_2
print(f"Generando audio para {turn['speaker']}: {turn['text'][:50]}... con voz {voice}")
tmp_path = await self._generate_audio(turn["text"], voice)
os.rename(tmp_path, filename)
filenames.append(str(filename))
if not filenames:
raise ValueError("No audio files generated")
return filenames, str(output_dir)
except Exception as e:
raise RuntimeError(f"Text-to-speech failed: {e}")
async def _generate_audio(self, text: str, voice: str) -> str:
if not text.strip():
raise ValueError("Text cannot be empty")
communicate = edge_tts.Communicate(
text,
voice.split(" - ")[0],
rate="+0%",
pitch="+0Hz"
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
await communicate.save(tmp_file.name)
return tmp_file.name
def _create_output_directory(self) -> str:
folder_name = base64.urlsafe_b64encode(os.urandom(8)).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def combine_audio_files(self, filenames: List[str]) -> AudioSegment:
if not filenames:
raise ValueError("No audio files provided")
combined = AudioSegment.empty()
for filename in filenames:
combined += AudioSegment.from_file(filename, format="mp3")
return combined
def add_background_music_and_tags(
self,
speech_audio: AudioSegment,
music_path: str,
tags_paths: List[str],
custom_music_path: str = None
) -> AudioSegment:
music_file = custom_music_path if custom_music_path and os.path.exists(custom_music_path) else music_path
music = AudioSegment.from_file(music_file).fade_out(2000) - 25
if len(music) < len(speech_audio):
music = music * ((len(speech_audio) // len(music)) + 1)
music = music[:len(speech_audio)]
mixed = speech_audio.overlay(music)
tag_outro = AudioSegment.from_file(tags_paths[0]) - 10
tag_trans = AudioSegment.from_file(tags_paths[1]) - 10
final_audio = mixed + tag_outro
silent_ranges = []
for i in range(0, len(speech_audio) - 500, 100):
chunk = speech_audio[i:i+500]
if chunk.dBFS < -40:
silent_ranges.append((i, i + 500))
for start, end in reversed(silent_ranges):
if (end - start) >= len(tag_trans):
final_audio = final_audio.overlay(tag_trans, position=start + 50)
return final_audio
async def url_to_audio(self, url: str, voice_1: str, voice_2: str, custom_music_path: str = None) -> Tuple[str, str]:
text = self.fetch_text(url)
if len(words := text.split()) > self.config.max_words:
text = " ".join(words[:self.config.max_words])
conversation = self.extract_conversation(text)
return await self._process_to_audio(conversation, voice_1, voice_2, custom_music_path)
async def text_to_audio(self, text: str, voice_1: str, voice_2: str, custom_music_path: str = None) -> Tuple[str, str]:
conversation = self.extract_conversation(text)
return await self._process_to_audio(conversation, voice_1, voice_2, custom_music_path)
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str, custom_music_path: str = None) -> Tuple[str, str]:
conversation = {"conversation": [{"speaker": "Anfitrión1", "text": text}]}
return await self._process_to_audio(conversation, voice_1, voice_2, custom_music_path)
async def _process_to_audio(
self,
conversation: Dict,
voice_1: str,
voice_2: str,
custom_music_path: str = None
) -> Tuple[str, str]:
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
combined = self.combine_audio_files(audio_files)
final_audio = self.add_background_music_and_tags(
combined,
"musica.mp3",
["tag.mp3", "tag2.mp3"],
custom_music_path
)
output_path = os.path.join(folder_name, "podcast_final.mp3")
final_audio.export(output_path, format="mp3")
for f in audio_files:
os.remove(f)
text_output = "\n".join(
f"{turn['speaker']}: {turn['text']}"
for turn in conversation["conversation"]
)
return output_path, text_output