Spaces:
Running
Running
| import gradio as gr | |
| from huggingface_hub import InferenceClient, HfApi | |
| import os | |
| import requests | |
| from typing import List, Dict, Union, Tuple | |
| import traceback | |
| from PIL import Image | |
| from io import BytesIO | |
| import asyncio | |
| from gradio_client import Client | |
| import time | |
| import threading | |
| import json | |
| import re | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN) | |
| hf_api = HfApi(token=HF_TOKEN) | |
| def get_headers(): | |
| if not HF_TOKEN: | |
| raise ValueError("Hugging Face token not found in environment variables") | |
| return {"Authorization": f"Bearer {HF_TOKEN}"} | |
| def get_file_content(space_id: str, file_path: str) -> str: | |
| file_url = f"https://huggingface.co/spaces/{space_id}/raw/main/{file_path}" | |
| try: | |
| response = requests.get(file_url, headers=get_headers()) | |
| if response.status_code == 200: | |
| return response.text | |
| else: | |
| return f"File not found or inaccessible: {file_path}" | |
| except requests.RequestException: | |
| return f"Error fetching content for file: {file_path}" | |
| def get_space_structure(space_id: str) -> Dict: | |
| try: | |
| files = hf_api.list_repo_files(repo_id=space_id, repo_type="space") | |
| tree = {"type": "directory", "path": "", "name": space_id, "children": []} | |
| for file in files: | |
| path_parts = file.split('/') | |
| current = tree | |
| for i, part in enumerate(path_parts): | |
| if i == len(path_parts) - 1: # ํ์ผ | |
| current["children"].append({"type": "file", "path": file, "name": part}) | |
| else: # ๋๋ ํ ๋ฆฌ | |
| found = False | |
| for child in current["children"]: | |
| if child["type"] == "directory" and child["name"] == part: | |
| current = child | |
| found = True | |
| break | |
| if not found: | |
| new_dir = {"type": "directory", "path": '/'.join(path_parts[:i+1]), "name": part, "children": []} | |
| current["children"].append(new_dir) | |
| current = new_dir | |
| return tree | |
| except Exception as e: | |
| print(f"Error in get_space_structure: {str(e)}") | |
| return {"error": f"API request error: {str(e)}"} | |
| def format_tree_structure(tree_data: Dict, indent: str = "") -> str: | |
| if "error" in tree_data: | |
| return tree_data["error"] | |
| formatted = f"{indent}{'๐' if tree_data.get('type') == 'directory' else '๐'} {tree_data.get('name', 'Unknown')}\n" | |
| if tree_data.get("type") == "directory": | |
| for child in sorted(tree_data.get("children", []), key=lambda x: (x.get("type", "") != "directory", x.get("name", ""))): | |
| formatted += format_tree_structure(child, indent + " ") | |
| return formatted | |
| def summarize_code(app_content: str): | |
| system_message = "๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ๊ณ ์์ฝํ๋ AI ์กฐ์์ ๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ 3์ค ์ด๋ด๋ก ๊ฐ๊ฒฐํ๊ฒ ์์ฝํด์ฃผ์ธ์." | |
| user_message = f"๋ค์ Python ์ฝ๋๋ฅผ 3์ค ์ด๋ด๋ก ์์ฝํด์ฃผ์ธ์:\n\n{app_content}" | |
| messages = [ | |
| {"role": "system", "content": system_message}, | |
| {"role": "user", "content": user_message} | |
| ] | |
| try: | |
| response = hf_client.chat_completion(messages, max_tokens=200, temperature=0.7) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"์์ฝ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
| def analyze_code(app_content: str): | |
| system_message = """๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ๋ AI ์กฐ์์ ๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ ๋ถ์ํ์ฌ ๋ค์ ํญ๋ชฉ์ ๋ํด ์ค๋ช ํด์ฃผ์ธ์: | |
| A. ๋ฐฐ๊ฒฝ ๋ฐ ํ์์ฑ | |
| B. ๊ธฐ๋ฅ์ ํจ์ฉ์ฑ ๋ฐ ๊ฐ์น | |
| C. ํน์ฅ์ | |
| D. ์ ์ฉ ๋์ ๋ฐ ํ๊ฒ | |
| E. ๊ธฐ๋ํจ๊ณผ | |
| ๊ธฐ์กด ๋ฐ ์ ์ฌ ํ๋ก์ ํธ์ ๋น๊ตํ์ฌ ๋ถ์ํด์ฃผ์ธ์. Markdown ํ์์ผ๋ก ์ถ๋ ฅํ์ธ์.""" | |
| user_message = f"๋ค์ Python ์ฝ๋๋ฅผ ๋ถ์ํด์ฃผ์ธ์:\n\n{app_content}" | |
| messages = [ | |
| {"role": "system", "content": system_message}, | |
| {"role": "user", "content": user_message} | |
| ] | |
| try: | |
| response = hf_client.chat_completion(messages, max_tokens=1000, temperature=0.7) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"๋ถ์ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
| def explain_usage(app_content: str): | |
| system_message = "๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ์ฌ ์ฌ์ฉ๋ฒ์ ์ค๋ช ํ๋ AI ์กฐ์์ ๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ ๋ฐํ์ผ๋ก ๋ง์น ํ๋ฉด์ ๋ณด๋ ๊ฒ์ฒ๋ผ ์ฌ์ฉ๋ฒ์ ์์ธํ ์ค๋ช ํด์ฃผ์ธ์. Markdown ํ์์ผ๋ก ์ถ๋ ฅํ์ธ์." | |
| user_message = f"๋ค์ Python ์ฝ๋์ ์ฌ์ฉ๋ฒ์ ์ค๋ช ํด์ฃผ์ธ์:\n\n{app_content}" | |
| messages = [ | |
| {"role": "system", "content": system_message}, | |
| {"role": "user", "content": user_message} | |
| ] | |
| try: | |
| response = hf_client.chat_completion(messages, max_tokens=800, temperature=0.7) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"์ฌ์ฉ๋ฒ ์ค๋ช ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
| def adjust_lines_for_code(code_content: str, min_lines: int = 10, max_lines: int = 100) -> int: | |
| """ | |
| ์ฝ๋ ๋ด์ฉ์ ๋ฐ๋ผ lines ์๋ฅผ ๋์ ์ผ๋ก ์กฐ์ ํฉ๋๋ค. | |
| Parameters: | |
| - code_content (str): ์ฝ๋ ํ ์คํธ ๋ด์ฉ | |
| - min_lines (int): ์ต์ lines ์ | |
| - max_lines (int): ์ต๋ lines ์ | |
| Returns: | |
| - int: ์ค์ ๋ lines ์ | |
| """ | |
| # ์ฝ๋์ ์ค ์ ๊ณ์ฐ | |
| num_lines = len(code_content.split('\n')) | |
| # ์ค ์๊ฐ min_lines๋ณด๋ค ์ ๋ค๋ฉด min_lines ์ฌ์ฉ, max_lines๋ณด๋ค ํฌ๋ฉด max_lines ์ฌ์ฉ | |
| return min(max(num_lines, min_lines), max_lines) | |
| def analyze_space(url: str, progress=gr.Progress()): | |
| try: | |
| space_id = url.split('spaces/')[-1] | |
| # Space ID ์ ํจ์ฑ ๊ฒ์ฌ ์์ | |
| if not re.match(r'^[\w.-]+/[\w.-]+$', space_id): | |
| raise ValueError(f"Invalid Space ID format: {space_id}") | |
| progress(0.1, desc="ํ์ผ ๊ตฌ์กฐ ๋ถ์ ์ค...") | |
| tree_structure = get_space_structure(space_id) | |
| if "error" in tree_structure: | |
| raise ValueError(tree_structure["error"]) | |
| tree_view = format_tree_structure(tree_structure) | |
| progress(0.3, desc="app.py ๋ด์ฉ ๊ฐ์ ธ์ค๋ ์ค...") | |
| app_content = get_file_content(space_id, "app.py") | |
| progress(0.5, desc="์ฝ๋ ์์ฝ ์ค...") | |
| summary = summarize_code(app_content) | |
| progress(0.7, desc="์ฝ๋ ๋ถ์ ์ค...") | |
| analysis = analyze_code(app_content) | |
| progress(0.9, desc="์ฌ์ฉ๋ฒ ์ค๋ช ์์ฑ ์ค...") | |
| usage = explain_usage(app_content) | |
| # ์ค ์ ๊ณ์ฐํ์ฌ lines ์ค์ | |
| app_py_lines = adjust_lines_for_code(app_content) | |
| progress(1.0, desc="์๋ฃ") | |
| return app_content, tree_view, tree_structure, space_id, summary, analysis, usage, app_py_lines | |
| except Exception as e: | |
| print(f"Error in analyze_space: {str(e)}") | |
| print(traceback.format_exc()) | |
| return f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}", "", None, "", "", "", "", 10 | |
| def respond(message: str, chat_history: List[Dict[str, str]], max_tokens: int, temperature: float, top_p: float) -> str: | |
| system_message = """๋น์ ์ ํ๊น ํ์ด์ค์ ํนํ๋ AI ์ฝ๋ฉ ์ ๋ฌธ๊ฐ์ ๋๋ค. ์ฌ์ฉ์์ ์ง๋ฌธ์ ์น์ ํ๊ณ ์์ธํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์. | |
| Gradio ํน์ฑ์ ์ ํํ ์ธ์ํ๊ณ Requirements.txt ๋๋ฝ์์ด ์ฝ๋ฉ๊ณผ ์ค๋ฅ๋ฅผ ํด๊ฒฐํด์ผ ํฉ๋๋ค. | |
| ํญ์ ์ ํํ๊ณ ์ ์ฉํ ์ ๋ณด๋ฅผ ์ ๊ณตํ๋๋ก ๋ ธ๋ ฅํ์ธ์.""" | |
| messages = [{"role": "system", "content": system_message}] | |
| messages.extend(chat_history) | |
| messages.append({"role": "user", "content": message}) | |
| try: | |
| response = hf_client.chat_completion(messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"์๋ต ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
| def create_ui(): | |
| try: | |
| css = """ | |
| footer {visibility: hidden;} | |
| .output-group { | |
| border: 1px solid #ddd; | |
| border-radius: 5px; | |
| padding: 10px; | |
| margin-bottom: 20px; | |
| } | |
| .scroll-lock { | |
| overflow-y: auto !important; | |
| max-height: calc((100vh - 200px) / 5) !important; | |
| } | |
| .tree-view-scroll { | |
| overflow-y: auto !important; | |
| max-height: calc((100vh - 200px) / 2) !important; | |
| } | |
| .full-height { | |
| height: calc(200em * 1.2) !important; | |
| overflow-y: auto !important; | |
| } | |
| .code-box { | |
| overflow-x: auto !important; | |
| overflow-y: auto !important; | |
| white-space: pre !important; | |
| word-wrap: normal !important; | |
| height: 100% !important; | |
| } | |
| .code-box > div { | |
| min-width: 100% !important; | |
| } | |
| .code-box > div > textarea { | |
| word-break: normal !important; | |
| overflow-wrap: normal !important; | |
| } | |
| .tab-nav { | |
| background-color: #2c3e50; | |
| border-radius: 5px 5px 0 0; | |
| overflow: hidden; | |
| } | |
| .tab-nav button { | |
| color: #ecf0f1 !important; | |
| background-color: #34495e; | |
| border: none; | |
| padding: 10px 20px; | |
| margin: 0; | |
| transition: background-color 0.3s; | |
| font-size: 16px; | |
| font-weight: bold; | |
| } | |
| .tab-nav button:hover { | |
| background-color: #2980b9; | |
| } | |
| .tab-nav button.selected { | |
| color: #2c3e50 !important; | |
| background-color: #ecf0f1; | |
| } | |
| input[type="text"], textarea { | |
| color: #2c3e50 !important; | |
| background-color: #ecf0f1 !important; | |
| } | |
| """ | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: | |
| gr.Markdown("# Mouse: HuggingFace") | |
| with gr.Tabs() as tabs: | |
| with gr.TabItem("๋ถ์"): | |
| with gr.Row(): | |
| with gr.Column(scale=6): # ์ผ์ชฝ 60% | |
| url_input = gr.Textbox(label="HuggingFace Space URL") | |
| analyze_button = gr.Button("๋ถ์") | |
| with gr.Group(elem_classes="output-group scroll-lock"): | |
| summary_output = gr.Markdown(label="์์ฝ (3์ค ์ด๋ด)") | |
| with gr.Group(elem_classes="output-group scroll-lock"): | |
| analysis_output = gr.Markdown(label="๋ถ์") | |
| with gr.Group(elem_classes="output-group scroll-lock"): | |
| usage_output = gr.Markdown(label="์ฌ์ฉ๋ฒ") | |
| with gr.Group(elem_classes="output-group tree-view-scroll"): # ํธ๋ฆฌ ๋ทฐ ์คํฌ๋กค ์ถ๊ฐ | |
| tree_view_output = gr.Textbox(label="ํ์ผ ๊ตฌ์กฐ (Tree View)", lines=30) | |
| with gr.Column(scale=4): # ์ค๋ฅธ์ชฝ 40% | |
| with gr.Group(elem_classes="output-group full-height"): | |
| code_tabs = gr.Tabs() | |
| with code_tabs: | |
| app_py_tab = gr.TabItem("app.py") | |
| with app_py_tab: | |
| app_py_content = gr.Code( | |
| language="python", | |
| label="app.py", | |
| lines=200, | |
| elem_classes="full-height code-box" | |
| ) | |
| requirements_tab = gr.TabItem("requirements.txt") | |
| with requirements_tab: | |
| requirements_content = gr.Textbox( | |
| label="requirements.txt", | |
| lines=200, | |
| elem_classes="full-height code-box" | |
| ) | |
| with gr.TabItem("AI ์ฝ๋ฉ"): | |
| chatbot = gr.Chatbot(label="๋ํ", type='messages') | |
| msg = gr.Textbox(label="๋ฉ์์ง") | |
| # ์จ๊ฒจ์ง ์ํ๋ก ํ๋ผ๋ฏธํฐ ์ค์ | |
| max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens", visible=False) | |
| temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature", visible=False) | |
| top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P", visible=False) | |
| examples = [ | |
| ["์์ธํ ์ฌ์ฉ ๋ฐฉ๋ฒ์ ๋ง์น ํ๋ฉด์ ๋ณด๋ฉด์ ์ค๋ช ํ๋ฏ์ด 4000 ํ ํฐ ์ด์ ์์ธํ ์ค๋ช ํ๋ผ"], | |
| ["FAQ 20๊ฑด์ ์์ธํ๊ฒ ์์ฑํ๋ผ. 4000ํ ํฐ ์ด์ ์ฌ์ฉํ๋ผ."], | |
| ["์ฌ์ฉ ๋ฐฉ๋ฒ๊ณผ ์ฐจ๋ณ์ , ํน์ง, ๊ฐ์ ์ ์ค์ฌ์ผ๋ก 4000 ํ ํฐ ์ด์ ์ ํ๋ธ ์์ ์คํฌ๋ฆฝํธ ํํ๋ก ์์ฑํ๋ผ"], | |
| ["๋ณธ ์๋น์ค๋ฅผ SEO ์ต์ ํํ์ฌ ๋ธ๋ก๊ทธ ํฌ์คํธ(๋ฐฐ๊ฒฝ ๋ฐ ํ์์ฑ, ๊ธฐ์กด ์ ์ฌ ์๋น์ค์ ๋น๊ตํ์ฌ ํน์ฅ์ , ํ์ฉ์ฒ, ๊ฐ์น, ๊ธฐ๋ํจ๊ณผ, ๊ฒฐ๋ก ์ ํฌํจ)๋ก 4000 ํ ํฐ ์ด์ ์์ฑํ๋ผ"], | |
| ["ํนํ ์ถ์์ ํ์ฉํ ๊ธฐ์ ๋ฐ ๋น์ฆ๋์ค๋ชจ๋ธ ์ธก๋ฉด์ ํฌํจํ์ฌ ํนํ ์ถ์์ ๊ตฌ์ฑ์ ๋ง๊ฒ ํ์ ์ ์ธ ์ฐฝ์ ๋ฐ๋ช ๋ด์ฉ์ ์ค์ฌ์ผ๋ก 4000ํ ํฐ ์ด์ ์์ฑํ๋ผ."], | |
| ["๊ณ์ ์ด์ด์ ๋ต๋ณํ๋ผ"], | |
| ] | |
| gr.Examples(examples, inputs=msg) | |
| def respond_wrapper(message, chat_history, max_tokens, temperature, top_p): | |
| bot_message = respond(message, chat_history, max_tokens, temperature, top_p) | |
| chat_history.append({"role": "user", "content": message}) | |
| chat_history.append({"role": "assistant", "content": bot_message}) | |
| return "", chat_history | |
| msg.submit(respond_wrapper, [msg, chatbot, max_tokens, temperature, top_p], [msg, chatbot]) | |
| space_id_state = gr.State() | |
| tree_structure_state = gr.State() | |
| app_py_content_lines = gr.State() | |
| analyze_button.click( | |
| analyze_space, | |
| inputs=[url_input], | |
| outputs=[app_py_content, tree_view_output, tree_structure_state, space_id_state, summary_output, analysis_output, usage_output, app_py_content_lines] | |
| ).then( | |
| lambda space_id: get_file_content(space_id, "requirements.txt"), | |
| inputs=[space_id_state], | |
| outputs=[requirements_content] | |
| ) | |
| # lines ์๋ฅผ ๋์ ์ผ๋ก ์ค์ | |
| app_py_content.change(lambda lines: gr.update(lines=lines), inputs=[app_py_content_lines], outputs=[app_py_content]) | |
| return demo | |
| except Exception as e: | |
| print(f"Error in create_ui: {str(e)}") | |
| print(traceback.format_exc()) | |
| raise | |
| if __name__ == "__main__": | |
| try: | |
| print("Starting HuggingFace Space Analyzer...") | |
| demo = create_ui() | |
| print("UI created successfully.") | |
| print("Configuring Gradio queue...") | |
| demo.queue() | |
| print("Gradio queue configured.") | |
| print("Launching Gradio app...") | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| debug=True, | |
| show_api=False | |
| ) | |
| print("Gradio app launched successfully.") | |
| except Exception as e: | |
| print(f"Error in main: {str(e)}") | |
| print("Detailed error information:") | |
| print(traceback.format_exc()) | |
| raise |