|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
import requests |
|
from typing import List, Dict, Union |
|
import concurrent.futures |
|
import base64 |
|
import traceback |
|
import pandas as pd |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN) |
|
|
|
def get_headers(): |
|
if not HF_TOKEN: |
|
raise ValueError("Hugging Face token not found in environment variables") |
|
return {"Authorization": f"Bearer {HF_TOKEN}"} |
|
|
|
def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]: |
|
url = "https://huggingface.co/api/spaces" |
|
params = { |
|
"sort": "likes", |
|
"direction": -1, |
|
"limit": limit, |
|
"full": "true" |
|
} |
|
|
|
try: |
|
response = requests.get(url, params=params, headers=get_headers()) |
|
response.raise_for_status() |
|
data = response.json() |
|
|
|
if isinstance(data, list): |
|
return data |
|
else: |
|
return f"Unexpected API response format: {type(data)}" |
|
except requests.RequestException as e: |
|
return f"API request error: {str(e)}" |
|
except ValueError as e: |
|
return f"JSON decoding error: {str(e)}" |
|
|
|
def capture_thumbnail(space_id: str) -> str: |
|
screenshot_url = f"https://huggingface.co/spaces/{space_id}/screenshot.jpg" |
|
try: |
|
response = requests.get(screenshot_url, headers=get_headers()) |
|
if response.status_code == 200: |
|
return base64.b64encode(response.content).decode('utf-8') |
|
except requests.RequestException: |
|
pass |
|
return "" |
|
|
|
def get_app_py_content(space_id: str) -> str: |
|
app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py" |
|
try: |
|
response = requests.get(app_py_url, headers=get_headers()) |
|
if response.status_code == 200: |
|
return response.text |
|
else: |
|
return f"app.py file not found or inaccessible for space: {space_id}" |
|
except requests.RequestException: |
|
return f"Error fetching app.py content for space: {space_id}" |
|
|
|
def format_space(space: Dict) -> Dict: |
|
space_id = space.get('id', 'Unknown') |
|
space_name = space_id.split('/')[-1] if '/' in space_id else space_id |
|
|
|
space_author = space.get('author', 'Unknown') |
|
if isinstance(space_author, dict): |
|
space_author = space_author.get('user', space_author.get('name', 'Unknown')) |
|
|
|
space_likes = space.get('likes', 'N/A') |
|
space_url = f"https://huggingface.co/spaces/{space_id}" |
|
|
|
return { |
|
"id": space_id, |
|
"name": space_name, |
|
"author": space_author, |
|
"likes": space_likes, |
|
"url": space_url |
|
} |
|
|
|
def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]: |
|
if isinstance(spaces, str): |
|
return [{"error": spaces}] |
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: |
|
return list(executor.map(format_space, spaces)) |
|
|
|
def summarize_space(space: Dict) -> str: |
|
system_message = "๋น์ ์ Hugging Face Space์ ๋ด์ฉ์ ์์ฝํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ ๋ณด๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ๊ฒฐํ๊ณ ๋ช
ํํ ์์ฝ์ ์ ๊ณตํด์ฃผ์ธ์." |
|
user_message = f"๋ค์ Hugging Face Space๋ฅผ ์์ฝํด์ฃผ์ธ์: {space['name']} by {space['author']}. ์ข์์ ์: {space['likes']}. URL: {space['url']}" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_message}, |
|
{"role": "user", "content": user_message} |
|
] |
|
|
|
response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7) |
|
return response.choices[0].message.content |
|
|
|
def create_ui(): |
|
spaces_list = get_most_liked_spaces() |
|
formatted_spaces = format_spaces(spaces_list) |
|
print(f"Total spaces loaded: {len(formatted_spaces)}") |
|
|
|
df = pd.DataFrame(formatted_spaces) |
|
df['Open'] = df['url'].apply(lambda x: f'<a href="{x}" target="_blank">๐</a>') |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Hugging Face Most Liked Spaces") |
|
|
|
space_table = gr.Dataframe( |
|
value=df[['name', 'author', 'likes', 'Open']], |
|
headers=['Name', 'Author', 'Likes', 'Open'], |
|
row_count=(len(formatted_spaces), "fixed"), |
|
col_count=(4, "fixed"), |
|
interactive=False, |
|
wrap=True |
|
) |
|
|
|
with gr.Row(): |
|
selected_space = gr.Dropdown(choices=[space['id'] for space in formatted_spaces], label="Select a Space for Summary") |
|
summarize_btn = gr.Button("์์ฝ") |
|
|
|
output = gr.Textbox(label="Space ์ ๋ณด ๋ฐ ์์ฝ", lines=10) |
|
app_py_content = gr.Code(language="python", label="app.py ๋ด์ฉ") |
|
|
|
def on_select(space_id): |
|
try: |
|
selected_space = next((space for space in formatted_spaces if space['id'] == space_id), None) |
|
if selected_space: |
|
app_content = get_app_py_content(space_id) |
|
print(f"Selected space: {selected_space['name']} (ID: {space_id})") |
|
return f"์ ํ๋ Space: {selected_space['name']} (ID: {space_id})\nURL: {selected_space['url']}", app_content |
|
else: |
|
print(f"Space not found for ID: {space_id}") |
|
return "์ ํ๋ space๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.", "" |
|
except Exception as e: |
|
print(f"Error in on_select: {str(e)}") |
|
print(traceback.format_exc()) |
|
return f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}", "" |
|
|
|
def on_summarize(space_id): |
|
try: |
|
if space_id: |
|
selected_space = next((space for space in formatted_spaces if space['id'] == space_id), None) |
|
if selected_space: |
|
summary = summarize_space(selected_space) |
|
print(f"Summarizing space: {selected_space['name']}") |
|
return f"Space: {selected_space['name']} by {selected_space['author']}\nLikes: {selected_space['likes']}\nURL: {selected_space['url']}\n\n์์ฝ:\n{summary}" |
|
print("No space selected for summarization") |
|
return "์ ํ๋ space๊ฐ ์์ต๋๋ค. ๋จผ์ ๋ฆฌ์คํธ์์ space๋ฅผ ์ ํํด์ฃผ์ธ์." |
|
except Exception as e: |
|
print(f"Error in on_summarize: {str(e)}") |
|
print(traceback.format_exc()) |
|
return f"์์ฝ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" |
|
|
|
selected_space.change(on_select, selected_space, [output, app_py_content]) |
|
summarize_btn.click(on_summarize, inputs=[selected_space], outputs=[output]) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_ui() |
|
demo.launch() |