Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,488 Bytes
c9e0bab 6d34eee c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab a3c8358 c9e0bab 7b942c6 c9e0bab a3c8358 c9e0bab a3c8358 c9e0bab a3c8358 c9e0bab a3c8358 5163a74 a3c8358 5163a74 c9e0bab a3c8358 5163a74 c9e0bab a3c8358 5163a74 a3c8358 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 a3c8358 7b942c6 c9e0bab a3c8358 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 7b942c6 c9e0bab 3c6c26f 7b942c6 c9e0bab a3c8358 7b942c6 a3c8358 7b942c6 a3c8358 7b942c6 a3c8358 7b942c6 c9e0bab dbac20f c9e0bab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import types
import random
import spaces
import logging
import os
from pathlib import Path
from datetime import datetime
import torch
import numpy as np
import torchaudio
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from diffusers import AutoModel
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
from src.pipeline_wan_nag import NAGWanPipeline
from src.transformer_wan_nag import NagWanTransformer3DModel
# MMAudio imports
try:
import mmaudio
except ImportError:
os.system("pip install -e .")
import mmaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate,
load_video, make_video, setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
# NAG Video Settings
MOD_VALUE = 32
DEFAULT_DURATION_SECONDS = 4
DEFAULT_STEPS = 4
DEFAULT_SEED = 2025
DEFAULT_H_SLIDER_VALUE = 480
DEFAULT_W_SLIDER_VALUE = 832
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 129
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
DEFAULT_AUDIO_NEGATIVE_PROMPT = "music"
# NAG Model Settings
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
# MMAudio Settings
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16
audio_model_config: ModelConfig = all_model_cfg['large_44k_v2']
audio_model_config.download_if_needed()
setup_eval_logging()
# Initialize NAG Video Model
try:
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
pipe = NAGWanPipeline.from_pretrained(
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
pipe.to("cuda")
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
print("NAG Video Model loaded successfully!")
except Exception as e:
print(f"Error loading NAG Video Model: {e}")
pipe = None
# Initialize MMAudio Model
def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
seq_cfg = audio_model_config.seq_cfg
net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval()
net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True))
log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}')
feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path,
synchformer_ckpt=audio_model_config.synchformer_ckpt,
enable_conditions=True,
mode=audio_model_config.mode,
bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
return net, feature_utils, seq_cfg
try:
audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model()
print("MMAudio Model loaded successfully!")
except Exception as e:
print(f"Error loading MMAudio Model: {e}")
audio_net = None
# Audio generation function
@torch.inference_mode()
def add_audio_to_video(video_path, prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration):
"""Generate and add audio to video using MMAudio"""
if audio_net is None:
print("MMAudio model not loaded, returning video without audio")
return video_path
try:
rng = torch.Generator(device=device)
rng.seed() # Random seed for audio
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
video_info = load_video(video_path, duration)
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration = video_info.duration_sec
clip_frames = clip_frames.unsqueeze(0)
sync_frames = sync_frames.unsqueeze(0)
audio_seq_cfg.duration = duration
audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
audios = mmaudio_generate(clip_frames,
sync_frames, [prompt],
negative_text=[audio_negative_prompt],
feature_utils=audio_feature_utils,
net=audio_net,
fm=fm,
rng=rng,
cfg_strength=audio_cfg_strength)
audio = audios.float().cpu()[0]
# Create video with audio
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
return video_with_audio_path
except Exception as e:
print(f"Error in audio generation: {e}")
return video_path
# Combined generation function
def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds,
steps, seed, randomize_seed, enable_audio, audio_negative_prompt,
audio_steps, audio_cfg_strength):
# Calculate total duration including audio processing if enabled
video_duration = int(duration_seconds) * int(steps) * 2.25 + 5
audio_duration = 30 if enable_audio else 0 # Additional time for audio processing
return video_duration + audio_duration
@spaces.GPU(duration=get_duration)
def generate_video_with_audio(
prompt,
nag_negative_prompt, nag_scale,
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
steps=DEFAULT_STEPS,
seed=DEFAULT_SEED, randomize_seed=False,
enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
audio_steps=25, audio_cfg_strength=4.5,
):
if pipe is None:
return None, DEFAULT_SEED
try:
# Generate video first
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
print(f"Generating video with: prompt='{prompt}', resolution={target_w}x{target_h}, frames={num_frames}")
with torch.inference_mode():
nag_output_frames_list = pipe(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt,
nag_scale=nag_scale,
nag_tau=3.5,
nag_alpha=0.5,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=0.,
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
# Save initial video without audio
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
temp_video_path = tmpfile.name
export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS)
print(f"Video saved to: {temp_video_path}")
# Add audio if enabled
if enable_audio:
try:
print("Adding audio to video...")
final_video_path = add_audio_to_video(
temp_video_path,
prompt, # Use the same prompt for audio generation
audio_negative_prompt,
audio_steps,
audio_cfg_strength,
duration_seconds
)
# Clean up temp video
if os.path.exists(temp_video_path) and final_video_path != temp_video_path:
os.remove(temp_video_path)
print(f"Final video with audio: {final_video_path}")
except Exception as e:
log.error(f"Audio generation failed: {e}")
final_video_path = temp_video_path
else:
final_video_path = temp_video_path
return final_video_path, current_seed
except Exception as e:
print(f"Error in video generation: {e}")
return None, current_seed
# Example generation function - simplified
def set_example(prompt, nag_negative_prompt, nag_scale):
"""Set example values in the UI without triggering generation"""
return (
prompt,
nag_negative_prompt,
nag_scale,
DEFAULT_H_SLIDER_VALUE,
DEFAULT_W_SLIDER_VALUE,
DEFAULT_DURATION_SECONDS,
DEFAULT_STEPS,
DEFAULT_SEED,
True, # randomize_seed
True, # enable_audio
DEFAULT_AUDIO_NEGATIVE_PROMPT,
25, # audio_steps
4.5 # audio_cfg_strength
)
# Examples with audio descriptions
examples = [
["Midnight highway outside a neon-lit city. A black 1973 Porsche 911 Carrera RS speeds at 120 km/h. Inside, a stylish singer-guitarist sings while driving, vintage sunburst guitar on the passenger seat. Sodium streetlights streak over the hood; RGB panels shift magenta to blue on the driver. Camera: drone dive, Russian-arm low wheel shot, interior gimbal, FPV barrel roll, overhead spiral. Neo-noir palette, rain-slick asphalt reflections, roaring flat-six engine blended with live guitar.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
["Arena rock concert packed with 20 000 fans. A flamboyant lead guitarist in leather jacket and mirrored aviators shreds a cherry-red Flying V on a thrust stage. Pyro flames shoot up on every downbeat, COβ jets burst behind. Moving-head spotlights swirl teal and amber, follow-spots rim-light the guitarist's hair. Steadicam 360-orbit, crane shot rising over crowd, ultra-slow-motion pick attack at 1 000 fps. Film-grain teal-orange grade, thunderous crowd roar mixes with screaming guitar solo.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
["Golden-hour countryside road winding through rolling wheat fields. A man and woman ride a vintage cafΓ©-racer motorcycle, hair and scarf fluttering in the warm breeze. Drone chase shot reveals endless patchwork farmland; low slider along rear wheel captures dust trail. Sun-flare back-lights the riders, lens blooms on highlights. Soft acoustic rock underscore; engine rumble mixed at β8 dB. Warm pastel color grade, gentle film-grain for nostalgic vibe.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
]
# CSS styling - Fixed for better layout
css = """
/* Right column - video output */
.video-output {
border-radius: 15px;
overflow: hidden;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
width: 100% !important;
height: auto !important;
min-height: 400px;
}
/* Ensure video container is responsive */
.video-output video {
width: 100% !important;
height: auto !important;
max-height: 600px;
object-fit: contain;
display: block;
}
/* Remove any overlay or background from video container */
.video-output > div {
background: transparent !important;
padding: 0 !important;
}
/* Remove gradio's default video player overlay */
.video-output .wrap {
background: transparent !important;
}
/* Ensure no gray overlay on video controls */
.video-output video::-webkit-media-controls-enclosure {
background: transparent;
}
"""
# Gradio interface - Fixed structure
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div class="container">
<h1 class="main-title">π¬ VEO3 Free</h1>
<p class="subtitle">Wan2.1-T2V-14B + Fast 4-step with NAG + Automatic Audio Generation</p>
</div>
""")
gr.HTML("""
<div class='container' style='display:flex; justify-content:center; gap:12px; margin-bottom: 20px;'>
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
</a>
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=5):
with gr.Group(elem_classes="prompt-container"):
prompt = gr.Textbox(
label="β¨ Video Prompt (also used for audio generation)",
placeholder="Describe your video scene in detail...",
lines=3,
elem_classes="prompt-input"
)
with gr.Accordion("π¨ Advanced Video Settings", open=False):
nag_negative_prompt = gr.Textbox(
label="Video Negative Prompt",
value=DEFAULT_NAG_NEGATIVE_PROMPT,
lines=2,
)
nag_scale = gr.Slider(
label="NAG Scale",
minimum=1.0,
maximum=20.0,
step=0.25,
value=11.0,
info="Higher values = stronger guidance"
)
with gr.Group(elem_classes="settings-panel"):
gr.Markdown("### βοΈ Video Settings")
with gr.Row():
duration_seconds_input = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=DEFAULT_DURATION_SECONDS,
label="π± Duration (seconds)",
elem_classes="slider-container"
)
steps_slider = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=DEFAULT_STEPS,
label="π Inference Steps",
elem_classes="slider-container"
)
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"π Height (Γ{MOD_VALUE})",
elem_classes="slider-container"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"π Width (Γ{MOD_VALUE})",
elem_classes="slider-container"
)
with gr.Row():
seed_input = gr.Slider(
label="π± Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=DEFAULT_SEED,
interactive=True
)
randomize_seed_checkbox = gr.Checkbox(
label="π² Random Seed",
value=True,
interactive=True
)
with gr.Group(elem_classes="audio-settings"):
gr.Markdown("### π΅ Audio Generation Settings")
enable_audio = gr.Checkbox(
label="π Enable Automatic Audio Generation",
value=True,
interactive=True
)
with gr.Column(visible=True) as audio_settings_group:
audio_negative_prompt = gr.Textbox(
label="Audio Negative Prompt",
value=DEFAULT_AUDIO_NEGATIVE_PROMPT,
placeholder="Elements to avoid in audio (e.g., music, speech)",
)
with gr.Row():
audio_steps = gr.Slider(
minimum=10,
maximum=50,
step=5,
value=25,
label="ποΈ Audio Steps",
info="More steps = better quality"
)
audio_cfg_strength = gr.Slider(
minimum=1.0,
maximum=10.0,
step=0.5,
value=4.5,
label="ποΈ Audio Guidance",
info="Strength of prompt guidance"
)
# Toggle audio settings visibility
enable_audio.change(
fn=lambda x: gr.update(visible=x),
inputs=[enable_audio],
outputs=[audio_settings_group]
)
generate_button = gr.Button(
"π¬ Generate Video with Audio",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=5):
video_output = gr.Video(
label="Generated Video with Audio",
autoplay=True,
interactive=False,
elem_classes="video-output",
height=600
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; color: #6b7280;">
<p>π‘ Tip: The same prompt is used for both video and audio generation!</p>
<p>π§ Audio is automatically matched to the visual content</p>
</div>
""")
# Examples section moved outside of columns
with gr.Row():
gr.Markdown("### π― Example Prompts")
gr.Examples(
examples=examples,
inputs=[prompt, nag_negative_prompt, nag_scale],
outputs=None, # Don't connect outputs to avoid index issues
cache_examples=False
)
# Connect UI elements
ui_inputs = [
prompt,
nag_negative_prompt, nag_scale,
height_input, width_input, duration_seconds_input,
steps_slider,
seed_input, randomize_seed_checkbox,
enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength,
]
generate_button.click(
fn=generate_video_with_audio,
inputs=ui_inputs,
outputs=[video_output, seed_input],
)
if __name__ == "__main__":
demo.queue().launch() |