Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,668 Bytes
b934f72 cf82625 904c0a5 cf82625 904c0a5 cf82625 f1565b8 9fe68b1 a82e4ad 9fe68b1 f1565b8 9fe68b1 cf82625 9fe68b1 7d4bf39 9fe68b1 7d4bf39 9fe68b1 a82e4ad 9fe68b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import os
import random
import torch
import gradio as gr
import numpy as np
import spaces
from diffusers import DiffusionPipeline
from PIL import Image
# --- [Optional Patch] ---------------------------------------------------------
# This patch fixes potential JSON schema parsing issues in Gradio/Gradio-Client.
import gradio_client.utils
original_json_schema = gradio_client.utils._json_schema_to_python_type
from PIL import ImageOps, ExifTags
def preprocess_image(image):
# EXIF 정보에 따라 이미지 회전 조정
try:
image = ImageOps.exif_transpose(image)
except Exception as e:
print(f"EXIF 변환 오류: {e}")
# 이미지 크기 조정 (너무 크면 모델이 제대로 처리하지 못할 수 있음)
if max(image.width, image.height) > 1024:
image.thumbnail((1024, 1024), Image.LANCZOS)
# 이미지 모드 확인 및 변환
if image.mode != "RGB":
image = image.convert("RGB")
return image
# DELETE THIS LINE COMPLETELY
def patched_json_schema(schema, defs=None):
# Handle boolean schema directly
if isinstance(schema, bool):
return "bool"
# If 'additionalProperties' is a boolean, replace it with a generic type
try:
if "additionalProperties" in schema and isinstance(schema["additionalProperties"], bool):
schema["additionalProperties"] = {"type": "any"}
except (TypeError, KeyError):
pass
# Attempt to parse normally; fallback to "any" on error
try:
return original_json_schema(schema, defs)
except Exception:
return "any"
gradio_client.utils._json_schema_to_python_type = patched_json_schema
# -----------------------------------------------------------------------------
# ----------------------------- Model Loading ----------------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/flux-chatgpt-ghibli-lora"
def load_model_with_retry(max_retries=5):
for attempt in range(max_retries):
try:
print(f"Loading model attempt {attempt+1}/{max_retries}...")
pipeline = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
use_safetensors=True,
resume_download=True
)
print("Base model loaded successfully, now loading LoRA weights...")
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
print("Pipeline is ready!")
return pipeline
except Exception as e:
if attempt < max_retries - 1:
wait_time = 10 * (attempt + 1)
print(f"Error loading model: {e}. Retrying in {wait_time} seconds...")
import time
time.sleep(wait_time)
else:
raise Exception(f"Failed to load model after {max_retries} attempts: {e}")
pipeline = load_model_with_retry()
# ----------------------------- Inference Function -----------------------------
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
):
# If "randomize_seed" is selected, choose a random seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Running inference with prompt: {prompt}")
try:
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image, seed
except Exception as e:
print(f"Error during inference: {e}")
# Return a red error image of the specified size and the used seed
error_img = Image.new('RGB', (width, height), color='red')
return error_img, seed
# ----------------------------- Florence-2 Captioner ---------------------------
import subprocess
try:
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
except Exception as e:
print(f"Warning: Could not install flash-attn: {e}")
from transformers import AutoProcessor, AutoModelForCausalLM
# Function to safely load models
def load_caption_model(model_name):
try:
model = AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True
).eval()
processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True
)
return model, processor
except Exception as e:
print(f"Error loading caption model {model_name}: {e}")
return None, None
# Pre-load models and processors
print("Loading captioning models...")
default_caption_model = 'microsoft/Florence-2-large'
models = {}
processors = {}
# Try to load the default model
default_model, default_processor = load_caption_model(default_caption_model)
if default_model is not None and default_processor is not None:
models[default_caption_model] = default_model
processors[default_caption_model] = default_processor
print(f"Successfully loaded default caption model: {default_caption_model}")
else:
# Fallback to simpler model
fallback_model = 'gokaygokay/Florence-2-Flux'
fallback_model_obj, fallback_processor = load_caption_model(fallback_model)
if fallback_model_obj is not None and fallback_processor is not None:
models[fallback_model] = fallback_model_obj
processors[fallback_model] = fallback_processor
default_caption_model = fallback_model
print(f"Loaded fallback caption model: {fallback_model}")
else:
print("WARNING: Failed to load any caption model!")
@spaces.GPU
def caption_image(image, model_name=default_caption_model):
"""
Runs the selected Florence-2 model to generate a detailed caption.
"""
from PIL import Image as PILImage
import numpy as np
print(f"Starting caption generation with model: {model_name}")
# Handle case where image is already a PIL image
if isinstance(image, PILImage.Image):
pil_image = image
else:
# Convert numpy array to PIL
if isinstance(image, np.ndarray):
pil_image = PILImage.fromarray(image)
else:
print(f"Unexpected image type: {type(image)}")
return "Error: Unsupported image type"
# Convert input to RGB if needed
if pil_image.mode != "RGB":
pil_image = pil_image.convert("RGB")
# Check if model is available
if model_name not in models or model_name not in processors:
available_models = list(models.keys())
if available_models:
model_name = available_models[0]
print(f"Requested model not available, using: {model_name}")
else:
return "Error: No caption models available"
model = models[model_name]
processor = processors[model_name]
task_prompt = "<DESCRIPTION>"
user_prompt = task_prompt + "Describe this image in great detail."
try:
inputs = processor(text=user_prompt, images=pil_image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
repetition_penalty=1.10,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text, task=task_prompt, image_size=(pil_image.width, pil_image.height)
)
# Extract the caption
caption = parsed_answer.get("<DESCRIPTION>", "")
print(f"Generated caption: {caption}")
return caption
except Exception as e:
print(f"Error during captioning: {e}")
return f"Error generating caption: {str(e)}"
# --------- Process uploaded image and generate Ghibli style image ---------
@spaces.GPU(duration=120)
def process_uploaded_image(
image,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale
):
if image is None:
print("No image provided")
return None, None, "No image provided", "No image provided"
print("Starting image processing workflow")
# Step 1: Generate caption from the uploaded image
try:
caption = caption_image(image)
if caption.startswith("Error:"):
print(f"Captioning failed: {caption}")
# Use a default caption as fallback
caption = "A beautiful scene"
except Exception as e:
print(f"Exception during captioning: {e}")
caption = "A beautiful scene"
# Step 2: Append "ghibli style" to the caption
ghibli_prompt = f"{caption}, ghibli style"
print(f"Final prompt for Ghibli generation: {ghibli_prompt}")
# Step 3: Generate Ghibli-style image based on the caption
try:
generated_image, used_seed = inference(
prompt=ghibli_prompt,
seed=seed,
randomize_seed=randomize_seed,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
lora_scale=lora_scale
)
print(f"Image generation complete with seed: {used_seed}")
return generated_image, used_seed, caption, ghibli_prompt
except Exception as e:
print(f"Error generating image: {e}")
error_img = Image.new('RGB', (width, height), color='red')
return error_img, seed, caption, ghibli_prompt
# Define Ghibli Studio Theme
ghibli_theme = gr.themes.Soft(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Nunito"), "ui-sans-serif", "sans-serif"],
radius_size=gr.themes.sizes.radius_sm,
).set(
body_background_fill="#f0f9ff",
body_background_fill_dark="#0f172a",
button_primary_background_fill="#6366f1",
button_primary_background_fill_hover="#4f46e5",
button_primary_text_color="#ffffff",
block_title_text_weight="600",
block_border_width="1px",
block_shadow="0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1)",
)
# Custom CSS for enhanced visuals
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
margin-bottom: 1rem;
font-weight: 800;
font-size: 2.5rem;
background: linear-gradient(90deg, #4338ca, #3b82f6);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
padding: 0.5rem;
}
.tagline {
text-align: center;
font-size: 1.2rem;
margin-bottom: 2rem;
color: #4b5563;
}
.image-preview {
border-radius: 12px;
overflow: hidden;
box-shadow: 0 10px 15px -3px rgb(0 0 0 / 0.1), 0 4px 6px -4px rgb(0 0 0 / 0.1);
}
.panel-box {
border-radius: 12px;
background-color: rgba(255, 255, 255, 0.8);
padding: 1rem;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
}
.control-panel {
padding: 1rem;
border-radius: 12px;
background-color: rgba(255, 255, 255, 0.9);
margin-bottom: 1rem;
border: 1px solid #e2e8f0;
}
.section-header {
font-weight: 600;
font-size: 1.1rem;
margin-bottom: 0.5rem;
color: #4338ca;
}
.transform-button {
font-weight: 600 !important;
margin-top: 1rem !important;
}
.footer {
text-align: center;
color: #6b7280;
margin-top: 2rem;
font-size: 0.9rem;
}
.output-panel {
background: linear-gradient(135deg, #f0f9ff, #e0f2fe);
border-radius: 12px;
padding: 1rem;
border: 1px solid #bfdbfe;
}
"""
# ----------------------------- Gradio UI --------------------------------------
with gr.Blocks(analytics_enabled=False, theme=ghibli_theme, css=custom_css) as demo:
gr.HTML(
"""
<div class="main-header">Open Ghibli Studio</div>
<div class="tagline">Transform your photos into magical Ghibli-inspired artwork</div>
"""
)
# Background image for the app
gr.HTML(
"""
<style>
body {
background-image: url('https://i.imgur.com/LxPQPR1.jpg');
background-size: cover;
background-position: center;
background-attachment: fixed;
background-repeat: no-repeat;
background-color: #f0f9ff;
}
@media (max-width: 768px) {
body {
background-size: contain;
}
}
</style>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-box"):
gr.HTML('<div class="section-header">Upload Image</div>')
upload_img = gr.Image(
label="Drop your image here",
type="pil",
elem_classes="image-preview",
height=400
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group(elem_classes="control-panel"):
gr.HTML('<div class="section-header">Generation Controls</div>')
with gr.Row():
img2img_seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
info="Set a specific seed for reproducible results"
)
img2img_randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True,
info="Enable to get different results each time"
)
with gr.Group():
gr.HTML('<div class="section-header">Image Size</div>')
with gr.Row():
img2img_width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
info="Image width in pixels"
)
img2img_height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
info="Image height in pixels"
)
with gr.Group():
gr.HTML('<div class="section-header">Generation Parameters</div>')
with gr.Row():
img2img_guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
info="Higher values follow the prompt more closely"
)
img2img_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=30,
info="More steps = more detailed but slower generation"
)
img2img_lora_scale = gr.Slider(
label="Ghibli Style Strength",
minimum=0.0,
maximum=1.0,
step=0.05,
value=1.0,
info="Controls the intensity of the Ghibli style"
)
transform_button = gr.Button("Transform to Ghibli Style", variant="primary", elem_classes="transform-button")
with gr.Column(scale=1):
with gr.Group(elem_classes="output-panel"):
gr.HTML('<div class="section-header">Ghibli Magic Result</div>')
ghibli_output_image = gr.Image(
label="Generated Ghibli Style Image",
elem_classes="image-preview",
height=400
)
ghibli_output_seed = gr.Number(label="Seed Used", interactive=False)
# Debug elements
with gr.Accordion("Image Details", open=False):
extracted_caption = gr.Textbox(
label="Detected Image Content",
placeholder="The AI will analyze your image and describe it here...",
info="AI-generated description of your uploaded image"
)
ghibli_prompt = gr.Textbox(
label="Generation Prompt",
placeholder="The prompt used to create your Ghibli image will appear here...",
info="Final prompt used for the Ghibli transformation"
)
gr.HTML(
"""
<div class="footer">
<p>Open Ghibli Studio uses AI to transform your images into Ghibli-inspired artwork.</p>
<p>Powered by FLUX.1 and Florence-2 models.</p>
</div>
"""
)
# Auto-process when image is uploaded
upload_img.upload(
process_uploaded_image,
inputs=[
upload_img,
img2img_seed,
img2img_randomize_seed,
img2img_width,
img2img_height,
img2img_guidance_scale,
img2img_steps,
img2img_lora_scale,
],
outputs=[
ghibli_output_image,
ghibli_output_seed,
extracted_caption,
ghibli_prompt,
]
)
# Manual process button
transform_button.click(
process_uploaded_image,
inputs=[
upload_img,
img2img_seed,
img2img_randomize_seed,
img2img_width,
img2img_height,
img2img_guidance_scale,
img2img_steps,
img2img_lora_scale,
],
outputs=[
ghibli_output_image,
ghibli_output_seed,
extracted_caption,
ghibli_prompt,
]
)
demo.launch(debug=True) |