Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,27 +3,16 @@ import cv2
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
-
import spaces
|
| 7 |
-
|
| 8 |
-
from glob import glob
|
| 9 |
-
from typing import Tuple
|
| 10 |
|
| 11 |
from PIL import Image
|
| 12 |
-
from gradio_imageslider import ImageSlider
|
| 13 |
from transformers import AutoModelForImageSegmentation
|
| 14 |
from torchvision import transforms
|
| 15 |
|
| 16 |
-
import requests
|
| 17 |
-
from io import BytesIO
|
| 18 |
-
import zipfile
|
| 19 |
-
|
| 20 |
-
|
| 21 |
torch.set_float32_matmul_precision('high')
|
| 22 |
torch.jit.script = lambda f: f
|
| 23 |
|
| 24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
-
### image_proc.py
|
| 27 |
def refine_foreground(image, mask, r=90):
|
| 28 |
if mask.size != image.size:
|
| 29 |
mask = mask.resize(image.size)
|
|
@@ -33,15 +22,12 @@ def refine_foreground(image, mask, r=90):
|
|
| 33 |
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
| 34 |
return image_masked
|
| 35 |
|
| 36 |
-
|
| 37 |
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
| 38 |
-
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
| 39 |
alpha = alpha[:, :, None]
|
| 40 |
F, blur_B = FB_blur_fusion_foreground_estimator(
|
| 41 |
image, image, image, alpha, r)
|
| 42 |
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
| 43 |
|
| 44 |
-
|
| 45 |
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
| 46 |
if isinstance(image, Image.Image):
|
| 47 |
image = np.array(image) / 255.0
|
|
@@ -57,9 +43,8 @@ def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
|
| 57 |
F = np.clip(F, 0, 1)
|
| 58 |
return F, blurred_B
|
| 59 |
|
| 60 |
-
|
| 61 |
class ImagePreprocessor():
|
| 62 |
-
def __init__(self, resolution
|
| 63 |
self.transform_image = transforms.Compose([
|
| 64 |
transforms.Resize(resolution),
|
| 65 |
transforms.ToTensor(),
|
|
@@ -70,159 +55,47 @@ class ImagePreprocessor():
|
|
| 70 |
image = self.transform_image(image)
|
| 71 |
return image
|
| 72 |
|
| 73 |
-
|
| 74 |
-
usage_to_weights_file = {
|
| 75 |
-
'General': 'BiRefNet',
|
| 76 |
-
'General-Lite': 'BiRefNet_lite',
|
| 77 |
-
'General-Lite-2K': 'BiRefNet_lite-2K',
|
| 78 |
-
'Matting': 'BiRefNet-matting',
|
| 79 |
-
'Portrait': 'BiRefNet-portrait',
|
| 80 |
-
'DIS': 'BiRefNet-DIS5K',
|
| 81 |
-
'HRSOD': 'BiRefNet-HRSOD',
|
| 82 |
-
'COD': 'BiRefNet-COD',
|
| 83 |
-
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
|
| 84 |
-
'General-legacy': 'BiRefNet-legacy'
|
| 85 |
-
}
|
| 86 |
-
|
| 87 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True)
|
| 88 |
birefnet.to(device)
|
| 89 |
birefnet.eval()
|
| 90 |
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
print('Using weights: {}.'.format(_weights_file))
|
| 100 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
|
| 101 |
-
birefnet.to(device)
|
| 102 |
-
birefnet.eval()
|
| 103 |
-
|
| 104 |
-
try:
|
| 105 |
-
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
|
| 106 |
-
except:
|
| 107 |
-
resolution = (1024, 1024) if weights_file not in ['General-Lite-2K'] else (2560, 1440)
|
| 108 |
-
print('Invalid resolution input. Automatically changed to 1024x1024 or 2K.')
|
| 109 |
-
|
| 110 |
-
if isinstance(images, list):
|
| 111 |
-
# For tab_batch
|
| 112 |
-
save_paths = []
|
| 113 |
-
save_dir = 'preds-BiRefNet'
|
| 114 |
-
if not os.path.exists(save_dir):
|
| 115 |
-
os.makedirs(save_dir)
|
| 116 |
-
tab_is_batch = True
|
| 117 |
-
else:
|
| 118 |
-
images = [images]
|
| 119 |
-
tab_is_batch = False
|
| 120 |
-
|
| 121 |
-
for idx_image, image_src in enumerate(images):
|
| 122 |
-
if isinstance(image_src, str):
|
| 123 |
-
if os.path.isfile(image_src):
|
| 124 |
-
image_ori = Image.open(image_src)
|
| 125 |
-
else:
|
| 126 |
-
response = requests.get(image_src)
|
| 127 |
-
image_data = BytesIO(response.content)
|
| 128 |
-
image_ori = Image.open(image_data)
|
| 129 |
-
else:
|
| 130 |
-
image_ori = Image.fromarray(image_src)
|
| 131 |
-
|
| 132 |
-
image = image_ori.convert('RGB')
|
| 133 |
-
# Preprocess the image
|
| 134 |
-
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
|
| 135 |
-
image_proc = image_preprocessor.proc(image)
|
| 136 |
-
image_proc = image_proc.unsqueeze(0)
|
| 137 |
-
|
| 138 |
-
# Prediction
|
| 139 |
-
with torch.no_grad():
|
| 140 |
-
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
|
| 141 |
-
pred = preds[0].squeeze()
|
| 142 |
-
|
| 143 |
-
# Show Results
|
| 144 |
-
pred_pil = transforms.ToPILImage()(pred)
|
| 145 |
-
image_masked = refine_foreground(image, pred_pil)
|
| 146 |
-
image_masked.putalpha(pred_pil.resize(image.size))
|
| 147 |
-
|
| 148 |
-
torch.cuda.empty_cache()
|
| 149 |
-
|
| 150 |
-
if tab_is_batch:
|
| 151 |
-
save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0]))
|
| 152 |
-
image_masked.save(save_file_path)
|
| 153 |
-
save_paths.append(save_file_path)
|
| 154 |
-
|
| 155 |
-
if tab_is_batch:
|
| 156 |
-
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
|
| 157 |
-
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
| 158 |
-
for file in save_paths:
|
| 159 |
-
zipf.write(file, os.path.basename(file))
|
| 160 |
-
return save_paths, zip_file_path
|
| 161 |
-
else:
|
| 162 |
-
return (image_masked, image_ori)
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
examples = [[_] for _ in glob('examples/*')][:]
|
| 166 |
-
# Add the option of resolution in a text box.
|
| 167 |
-
for idx_example, example in enumerate(examples):
|
| 168 |
-
examples[idx_example].append('1024x1024')
|
| 169 |
-
examples.append(examples[-1].copy())
|
| 170 |
-
examples[-1][1] = '512x512'
|
| 171 |
-
|
| 172 |
-
examples_url = [
|
| 173 |
-
['https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg'],
|
| 174 |
-
]
|
| 175 |
-
for idx_example_url, example_url in enumerate(examples_url):
|
| 176 |
-
examples_url[idx_example_url].append('1024x1024')
|
| 177 |
-
|
| 178 |
-
descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)'
|
| 179 |
-
' The resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n'
|
| 180 |
-
' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n'
|
| 181 |
-
' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.')
|
| 182 |
-
|
| 183 |
-
tab_image = gr.Interface(
|
| 184 |
-
fn=predict,
|
| 185 |
-
inputs=[
|
| 186 |
-
gr.Image(label='Upload an image'),
|
| 187 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
| 188 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
| 189 |
-
],
|
| 190 |
-
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
|
| 191 |
-
examples=examples,
|
| 192 |
-
api_name="image",
|
| 193 |
-
description=descriptions,
|
| 194 |
-
)
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
| 201 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
| 202 |
-
],
|
| 203 |
-
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
|
| 204 |
-
examples=examples_url,
|
| 205 |
-
api_name="text",
|
| 206 |
-
description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!',
|
| 207 |
-
)
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
| 214 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
| 215 |
-
],
|
| 216 |
-
outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")],
|
| 217 |
-
api_name="batch",
|
| 218 |
-
description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!',
|
| 219 |
-
)
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
)
|
| 226 |
|
| 227 |
if __name__ == "__main__":
|
| 228 |
-
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from PIL import Image
|
|
|
|
| 8 |
from transformers import AutoModelForImageSegmentation
|
| 9 |
from torchvision import transforms
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
torch.set_float32_matmul_precision('high')
|
| 12 |
torch.jit.script = lambda f: f
|
| 13 |
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
|
|
|
| 16 |
def refine_foreground(image, mask, r=90):
|
| 17 |
if mask.size != image.size:
|
| 18 |
mask = mask.resize(image.size)
|
|
|
|
| 22 |
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
| 23 |
return image_masked
|
| 24 |
|
|
|
|
| 25 |
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
|
|
|
| 26 |
alpha = alpha[:, :, None]
|
| 27 |
F, blur_B = FB_blur_fusion_foreground_estimator(
|
| 28 |
image, image, image, alpha, r)
|
| 29 |
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
| 30 |
|
|
|
|
| 31 |
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
| 32 |
if isinstance(image, Image.Image):
|
| 33 |
image = np.array(image) / 255.0
|
|
|
|
| 43 |
F = np.clip(F, 0, 1)
|
| 44 |
return F, blurred_B
|
| 45 |
|
|
|
|
| 46 |
class ImagePreprocessor():
|
| 47 |
+
def __init__(self, resolution=(1024, 1024)) -> None:
|
| 48 |
self.transform_image = transforms.Compose([
|
| 49 |
transforms.Resize(resolution),
|
| 50 |
transforms.ToTensor(),
|
|
|
|
| 55 |
image = self.transform_image(image)
|
| 56 |
return image
|
| 57 |
|
| 58 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet-matting', trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
birefnet.to(device)
|
| 60 |
birefnet.eval()
|
| 61 |
|
| 62 |
+
def predict(image):
|
| 63 |
+
if image is None:
|
| 64 |
+
raise gr.Error("Please upload an image.")
|
| 65 |
|
| 66 |
+
image_ori = Image.fromarray(image)
|
| 67 |
+
image = image_ori.convert('RGB')
|
| 68 |
+
|
| 69 |
+
# Preprocess the image
|
| 70 |
+
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
|
| 71 |
+
image_proc = image_preprocessor.proc(image)
|
| 72 |
+
image_proc = image_proc.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
# Prediction
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
|
| 77 |
+
pred = preds[0].squeeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# Show Results
|
| 80 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 81 |
+
image_masked = refine_foreground(image, pred_pil)
|
| 82 |
+
image_masked.putalpha(pred_pil.resize(image.size))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
torch.cuda.empty_cache()
|
| 85 |
+
|
| 86 |
+
# Save as PNG
|
| 87 |
+
output_path = "output.png"
|
| 88 |
+
image_masked.save(output_path)
|
| 89 |
+
|
| 90 |
+
return output_path
|
| 91 |
+
|
| 92 |
+
iface = gr.Interface(
|
| 93 |
+
fn=predict,
|
| 94 |
+
inputs=gr.Image(type="numpy"),
|
| 95 |
+
outputs=gr.Image(type="filepath"),
|
| 96 |
+
title="BiRefNet Matting",
|
| 97 |
+
description="Upload an image to perform matting using BiRefNet."
|
| 98 |
)
|
| 99 |
|
| 100 |
if __name__ == "__main__":
|
| 101 |
+
iface.launch(debug=True)
|