#!/usr/bin/env python3 # ========================================================== # FILE: ghostpack.py # ========================================================== import os, sys, time, json, argparse, importlib.util, subprocess, traceback import torch, einops, numpy as np, gradio as gr from PIL import Image from diffusers import AutoencoderKLHunyuanVideo from transformers import ( LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer, SiglipImageProcessor, SiglipVisionModel ) try: from diffusers_helper.hf_login import login from diffusers_helper.hunyuan import ( encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake ) from diffusers_helper.utils import ( save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp ) from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan from diffusers_helper.memory import ( gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete ) from diffusers_helper.thread_utils import AsyncStream, async_run from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html from diffusers_helper.clip_vision import hf_clip_vision_encode from diffusers_helper.bucket_tools import find_nearest_bucket except ImportError as e: with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f: f.write(f"[Dependency Error] {str(e)}\n") print(f"Dependency error: {str(e)}. Check outputs/install_logs.txt.") sys.exit(1) try: from huggingface_hub import hf_hub_download from safetensors.torch import load_file except ImportError as e: with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f: f.write(f"[Dependency Error] {str(e)}\n") print(f"Dependency error: {str(e)}. Install huggingface_hub and safetensors: pip install huggingface_hub safetensors") sys.exit(1) # ------------------------- CLI ---------------------------- parser = argparse.ArgumentParser() parser.add_argument('--share', action='store_true') parser.add_argument('--server', type=str, default='0.0.0.0') parser.add_argument('--port', type=int) parser.add_argument('--inbrowser', action='store_true') parser.add_argument('--cli', action='store_true') args = parser.parse_args() BASE = os.path.abspath(os.path.dirname(__file__)) os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download') LORA_CACHE = os.path.join(BASE, 'dlora') os.makedirs(LORA_CACHE, exist_ok=True) # Set HF token from environment variable HF_TOKEN = os.getenv('HF_TOKEN', 'XXXXXXXXXXXXXXXXXXXXXXXX') if args.cli: print("👻 GhostPack F1 Pro CLI\n") print("python ghostpack.py # launch UI") print("python ghostpack.py --cli # show help\n") sys.exit(0) # ---------------------- Paths ----------------------------- OUT_BASE = os.path.join(BASE, 'outputs') OUT_IMG = os.path.join(OUT_BASE, 'img') OUT_TMP = os.path.join(OUT_BASE, 'tmp_vid') OUT_VID = os.path.join(OUT_BASE, 'vid') PROMPT_LOG = os.path.join(OUT_BASE, 'prompts.txt') SAVED_PROMPTS = os.path.join(OUT_BASE, 'saved_prompts.json') INSTALL_LOG = os.path.join(OUT_BASE, 'install_logs.txt') for d in (OUT_BASE, OUT_IMG, OUT_TMP, OUT_VID): os.makedirs(d, exist_ok=True) if not os.path.exists(SAVED_PROMPTS): json.dump([], open(SAVED_PROMPTS,'w')) if not os.path.exists(INSTALL_LOG): open(INSTALL_LOG,'w').close() # ---------------- Auto-Downloader ------------------------ def auto_download_fastvideo_lora(): repo_id = "Kijai/HunyuanVideo_comfy" filename = "hyvideo_FastVideo_LoRA-fp8.safetensors" try: msg, lora_path = download_lora(repo_id, filename, HF_TOKEN) return msg except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Auto-Download Error] {repo_id}/{filename}: {str(e)}\n") return f"❌ Auto-download failed: {str(e)}" # Run auto-downloader at startup auto_download_status = auto_download_fastvideo_lora() # ---------------- Prompt utils --------------------------- def get_last_prompts(): return json.load(open(SAVED_PROMPTS))[-5:][::-1] def save_prompt_fn(p, n): if not p: return "❌ No prompt" data = json.load(open(SAVED_PROMPTS)) entry = {'prompt': p, 'negative': n} if entry not in data: data.append(entry) json.dump(data, open(SAVED_PROMPTS,'w')) return "✅ Saved" def load_prompt_fn(idx): lst = get_last_prompts() return lst[idx]['prompt'] if idx < len(lst) else "" # ---------------- Cleanup utils -------------------------- def clear_temp_videos(): try: [os.remove(os.path.join(OUT_TMP,f)) for f in os.listdir(OUT_TMP)] return "✅ Temp cleared" except Exception as e: return f"❌ Failed to clear temp: {str(e)}" def clear_old_files(): try: cutoff = time.time() - 7*24*3600 c = 0 for d in (OUT_TMP, OUT_IMG): for f in os.listdir(d): p = os.path.join(d, f) if os.path.isfile(p) and os.path.getmtime(p) < cutoff: os.remove(p) c += 1 return f"✅ {c} old files removed" except Exception as e: return f"❌ Failed to clear old files: {str(e)}" def clear_images(): try: [os.remove(os.path.join(OUT_IMG,f)) for f in os.listdir(OUT_IMG)] return "✅ Images cleared" except Exception as e: return f"❌ Failed to clear images: {str(e)}" def clear_videos(): try: [os.remove(os.path.join(OUT_VID,f)) for f in os.listdir(OUT_VID)] return "✅ Videos cleared" except Exception as e: return f"❌ Failed to clear videos: {str(e)}" # ---------------- Gallery helpers ------------------------ def list_images(): try: return sorted( [os.path.join(OUT_IMG,f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png','.jpg'))], key=os.path.getmtime ) except Exception: return [] def list_videos(): try: return sorted( [os.path.join(OUT_VID,f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')], key=os.path.getmtime ) except Exception: return [] def list_loras(): try: return sorted( [os.path.join(LORA_CACHE,f) for f in os.listdir(LORA_CACHE) if f.lower().endswith('.safetensors')], key=os.path.getmtime ) except Exception: return [] def load_image(sel): try: imgs = list_images() if sel in [os.path.basename(p) for p in imgs]: pth = imgs[[os.path.basename(p) for p in imgs].index(sel)] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) return gr.update(), gr.update() except Exception as e: return gr.update(), gr.update(value=f"❌ Error: {str(e)}") def load_video(sel): try: vids = list_videos() if sel in [os.path.basename(p) for p in vids]: pth = vids[[os.path.basename(p) for p in vids].index(sel)] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) return gr.update(), gr.update() except Exception as e: return gr.update(), gr.update(value=f"❌ Error: {str(e)}") def load_lora_select(sel): try: loras = list_loras() if sel in [os.path.basename(p) for p in loras]: pth = loras[[os.path.basename(p) for p in loras].index(sel)] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) return gr.update(), gr.update() except Exception as e: return gr.update(), gr.update(value=f"❌ Error: {str(e)}") def next_image_and_load(sel): try: imgs = list_images() if not imgs: return gr.update(), gr.update() names = [os.path.basename(i) for i in imgs] idx = (names.index(sel)+1) % len(names) if sel in names else 0 pth = imgs[idx] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) except Exception: return gr.update(), gr.update() def next_video_and_load(sel): try: vids = list_videos() if not vids: return gr.update(), gr.update() names = [os.path.basename(v) for v in vids] idx = (names.index(sel)+1) % len(names) if sel in names else 0 pth = vids[idx] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) except Exception: return gr.update(), gr.update() def next_lora_and_load(sel): try: loras = list_loras() if not loras: return gr.update(), gr.update() names = [os.path.basename(l) for l in loras] idx = (names.index(sel)+1) % len(names) if sel in names else 0 pth = loras[idx] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) except Exception: return gr.update(), gr.update() def gallery_image_select(evt: gr.SelectData): try: imgs = list_images() if evt.index is not None and evt.index < len(imgs): pth = imgs[evt.index] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) return gr.update(), gr.update() except Exception: return gr.update(), gr.update() def gallery_video_select(evt: gr.SelectData): try: vids = list_videos() if evt.index is not None and evt.index < len(vids): pth = vids[evt.index] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) return gr.update(), gr.update() except Exception: return gr.update(), gr.update() def gallery_lora_select(evt: gr.SelectData): try: loras = list_loras() if evt.index is not None and evt.index < len(loras): pth = loras[evt.index] return gr.update(value=pth), gr.update(value=os.path.basename(pth)) return gr.update(), gr.update() except Exception: return gr.update(), gr.update() # ---------------- Install status ------------------------- def check_mod(n): return importlib.util.find_spec(n) is not None def status_xformers(): return "✅ xformers" if check_mod("xformers") else "❌ xformers" def status_sage(): return "✅ sage-attn" if check_mod("sageattention") else "❌ sage-attn" def status_flash(): return "✅ flash-attn" if check_mod("flash_attn") else "⚠️ flash-attn" def install_pkg(pkg, warn=None): try: if warn: print(warn) time.sleep(1) out = subprocess.check_output( [sys.executable, "-m", "pip", "install", pkg], stderr=subprocess.STDOUT, text=True ) res = f"✅ {pkg}\n{out}\n" except subprocess.CalledProcessError as e: res = f"❌ {pkg}\n{e.output}\n" with open(INSTALL_LOG, 'a') as f: f.write(f"[{pkg}] {res}") return res install_xformers = lambda: install_pkg("xformers") install_sage_attn = lambda: install_pkg("sage-attn") install_flash_attn = lambda: install_pkg("flash-attn","⚠️ long compile") refresh_logs = lambda: open(INSTALL_LOG).read() clear_logs = lambda: (open(INSTALL_LOG,'w').close() or "✅ Logs cleared") # ---------------- LoRA Download and Load ------------------ def download_lora(repo_id, filename, hf_token): try: lora_path = os.path.join(LORA_CACHE, filename) if not os.path.exists(lora_path): if get_cuda_free_memory_gb(gpu) < 2: return "❌ Low VRAM (<2GB). Free up memory.", None hf_hub_download( repo_id=repo_id, filename=filename, local_dir=LORA_CACHE, token=hf_token ) with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Download] {repo_id}/{filename} downloaded to {lora_path}\n") return "✅ LoRA downloaded", lora_path except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Download Error] {repo_id}/{filename}: {str(e)}\n") return f"❌ Download failed: {str(e)}", None def load_lora(transformer, lora_path, lora_weight): try: if lora_path and os.path.exists(lora_path): if hasattr(transformer, 'load_lora_weights'): transformer.load_lora_weights( lora_path, adapter_name="fastvideo", weight=lora_weight ) with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Load] {lora_path} loaded with standard method, weight {lora_weight}\n") return "✅ LoRA loaded" else: # Manual LoRA loading lora_weights = load_file(lora_path) state_dict = transformer.state_dict() for key, value in lora_weights.items(): if key in state_dict: state_dict[key] = state_dict[key] + lora_weight * value.to(state_dict[key].device) else: # Try partial key matching for common transformer layers for model_key in state_dict: if key.split('.')[-1] in model_key and ('self_attn' in model_key or 'ffn' in model_key): state_dict[model_key] = state_dict[model_key] + lora_weight * value.to(state_dict[model_key].device) break else: with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Load Warning] Key {key} not found in model state_dict\n") transformer.load_state_dict(state_dict) with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Load] {lora_path} loaded manually, weight {lora_weight}\n") return "✅ LoRA loaded manually" return "❌ No valid LoRA path" except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Load Error] {lora_path}: {str(e)}\n") return f"⚠️ LoRA not supported, using base model: {str(e)}" def delete_lora(sel): try: loras = list_loras() if sel in [os.path.basename(p) for p in loras]: pth = loras[[os.path.basename(p) for p in loras].index(sel)] os.remove(pth) with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Delete] {pth} deleted\n") return "✅ LoRA deleted", gr.update(choices=[os.path.basename(l) for l in list_loras()], value=None) return "❌ No LoRA selected", gr.update() except Exception as e: return f"❌ Delete failed: {str(e)}", gr.update() # ---------------- Model load ----------------------------- free_mem = get_cuda_free_memory_gb(gpu) hv = free_mem > 60 try: text_encoder = LlamaModel.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16, token=HF_TOKEN ).cpu().eval() except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] text_encoder: {str(e)}\n") raise gr.Error(f"Failed to load text_encoder: {str(e)}") try: text_encoder_2 = CLIPTextModel.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16, token=HF_TOKEN ).cpu().eval() except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] text_encoder_2: {str(e)}\n") raise gr.Error(f"Failed to load text_encoder_2: {str(e)}") try: tokenizer = LlamaTokenizerFast.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer', token=HF_TOKEN ) except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] tokenizer: {str(e)}\n") raise gr.Error(f"Failed to load tokenizer: {str(e)}") try: tokenizer_2 = CLIPTokenizer.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2', token=HF_TOKEN ) except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] tokenizer_2: {str(e)}\n") raise gr.Error(f"Failed to load tokenizer_2: {str(e)}") try: vae = AutoencoderKLHunyuanVideo.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16, token=HF_TOKEN ).cpu().eval() except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] vae: {str(e)}\n") raise gr.Error(f"Failed to load vae: {str(e)}") try: feature_extractor = SiglipImageProcessor.from_pretrained( "lllyasviel/flux_redux_bfl", subfolder='feature_extractor', token=HF_TOKEN ) except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] feature_extractor: {str(e)}\n") raise gr.Error(f"Failed to load feature_extractor: {str(e)}") try: image_encoder = SiglipVisionModel.from_pretrained( "lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16, token=HF_TOKEN ).cpu().eval() except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] image_encoder: {str(e)}\n") raise gr.Error(f"Failed to load image_encoder: {str(e)}") try: transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( "lllyasviel/FramePack_F1_I2V_HY_20250503", torch_dtype=torch.bfloat16, token=HF_TOKEN ).cpu().eval() except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[Model Load Error] transformer: {str(e)}\n") raise gr.Error(f"Failed to load transformer: {str(e)}") if not hv: vae.enable_slicing() vae.enable_tiling() transformer.high_quality_fp32_output_for_inference = True transformer.to(dtype=torch.bfloat16) for m in (vae, image_encoder, text_encoder, text_encoder_2): m.to(dtype=torch.float16) for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer): m.requires_grad_(False) if not hv: DynamicSwapInstaller.install_model(transformer, device=gpu) DynamicSwapInstaller.install_model(text_encoder, device=gpu) else: for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer): m.to(gpu) stream = AsyncStream() # ---------------- Worker ------------------------------- @torch.no_grad() def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, lora_path, lora_weight, disable_prompt_mods): # Download and load LoRA if specified lora_msg = "No LoRA specified" if lora_path: try: if lora_path.startswith("http") or lora_path.startswith("Kijai/"): repo_id = "Kijai/HunyuanVideo_comfy" filename = "hyvideo_FastVideo_LoRA-fp8.safetensors" lora_msg, lora_path = download_lora(repo_id, filename, HF_TOKEN) if not lora_path: raise gr.Error(lora_msg) lora_msg = load_lora(transformer, lora_path, lora_weight) if "⚠️" in lora_msg or "❌" in lora_msg: print(lora_msg) else: stp = 8 # Override steps for FastVideo LoRA except Exception as e: with open(INSTALL_LOG, 'a') as f: f.write(f"[LoRA Error] {lora_path}: {str(e)}\n") lora_msg = f"⚠️ LoRA failed, using base model: {str(e)}" # Validate prompt try: if not disable_prompt_mods: if "stop" not in prompt.lower() and secs > 5: prompt += " The subject stops moving after 5 seconds." if "smooth" not in prompt.lower(): prompt = f"Smooth animation: {prompt}" if "silent" not in prompt.lower(): prompt += ", silent" if len(prompt.split()) > 50: print("Warning: Complex prompt may slow rendering or cause instability.") except Exception as e: raise gr.Error(f"Prompt validation failed: {str(e)}") # Check VRAM availability if get_cuda_free_memory_gb(gpu) < 2: raise gr.Error("Low VRAM (<2GB). Lower 'kee' or 'win'.") sections = max(round((secs*30)/(win*4)), 1) jid = generate_timestamp() try: with open(PROMPT_LOG, 'a') as f: f.write(f"{jid}\t{prompt}\t{n_p}\n") except Exception as e: print(f"Failed to log prompt: {str(e)}") stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start")))) try: if not hv: unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer) fake_diffusers_current_device(text_encoder, gpu) load_model_as_complete(text_encoder_2, gpu) lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) if cfg == 1: lv_n = torch.zeros_like(lv) cp_n = torch.zeros_like(cp) else: lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2) lv, m = crop_or_pad_yield_mask(lv, 512) lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512) lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)] H, W, _ = img.shape h, w = find_nearest_bucket(H, W, 640) img_np = resize_and_center_crop(img, w, h) Image.fromarray(img_np).save(os.path.join(OUT_IMG, f"{jid}.png")) img_pt = (torch.from_numpy(img_np).float()/127.5-1).permute(2,0,1)[None,:,None] if not hv: load_model_as_complete(vae, gpu) start_lat = vae_encode(img_pt, vae) if not hv: load_model_as_complete(image_encoder, gpu) img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16) gen = torch.Generator("cpu").manual_seed(seed) hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float16).cpu() hist_px = None total = 0 pad_seq = [3] + [2]*(sections-3) + [1,0] if sections>4 else list(reversed(range(sections))) for pad in pad_seq: last = pad == 0 if stream.input_queue.top() == "end": stream.output_queue.push(("end", None)) return pad_sz = pad * win idx = torch.arange(0, sum([1,pad_sz,win,1,2,16]))[None].to(device=gpu) a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1) clean_idx = torch.cat([a,d],1) pre = start_lat.to(hist_lat) post, two, four = hist_lat[:,:,:1+2+16].split([1,2,16],2) clean = torch.cat([pre, post],2) if not hv: unload_complete_models() move_model_to_device_with_memory_preservation(transformer, gpu, keep) transformer.initialize_teacache(tea, stp) def cb(d): pv = vae_decode_fake(d["denoised"]) pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8) pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c") cur = d["i"]+1 stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100*cur/stp), f"{cur}/{stp}")))) if stream.input_queue.top()=="end": stream.output_queue.push(("end", None)) raise KeyboardInterrupt new_lat = sample_hunyuan( transformer=transformer, sampler="unipc", width=w, height=h, frames=win*4-3, real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc, num_inference_steps=stp, generator=gen, prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp, negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n, device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb, latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx, clean_latents_2x=two, clean_latent_2x_indices=e, clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb ) if last: new_lat = torch.cat([start_lat.to(new_lat), new_lat],2) total += new_lat.shape[2] hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat],2) if not hv: offload_model_from_device_for_memory_preservation(transformer, gpu, 8) load_model_as_complete(vae, gpu) real = hist_lat[:,:,:total] if hist_px is None: hist_px = vae_decode(real, vae).cpu() else: overlap = win*4-3 curr = vae_decode(real[:,:,:win*2], vae).cpu() hist_px = soft_append_bcthw(curr, hist_px, overlap) if not hv: unload_complete_models() tmp = os.path.join(OUT_TMP, f"{jid}_{total}.mp4") save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf) stream.output_queue.push(('file', tmp)) if last: fin = os.path.join(OUT_VID, f"{jid}_{total}.mp4") os.replace(tmp, fin) stream.output_queue.push(('complete', fin)) break except Exception as e: traceback.print_exc() with open(INSTALL_LOG, 'a') as f: f.write(f"[Worker Error] {str(e)}\n") stream.output_queue.push(("end", None)) return lora_msg # ---------------- Process Function ----------------------- @torch.no_grad() def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods): global stream if img is None: raise gr.Error("Upload an image") yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True), gr.update() stream = AsyncStream() lora_msg = async_run(worker, img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods) out, log = None, "" while True: flag, data = stream.output_queue.next() if flag == "file": out = data yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg) if flag == "progress": pv, desc, html = data log = desc yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg) if flag in ("complete", "end"): yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False), gr.update(value=lora_msg) break def end_process(): stream.input_queue.push("end") # ------------------- UI ------------------------------ quick_prompts = [ ["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."], ["Smooth animation: A character moves for 5 seconds, static camera, silent."] ] css = make_progress_bar_css() + """ .orange-button{background:#ff6200;color:#fff;border-color:#ff6200;} .load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;} .big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;} .styled-dropdown{width:250px;padding:5px;border-radius:4px;} .viewer-column{width:100%;max-width:900px;margin:0 auto;} .media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;} .media-container{display:flex;gap:20px;align-items:flex-start;} .control-box{min-width:220px;} .control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;} .image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;} .image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;} .image-gallery img{object-fit:contain;height:360px!important;width:300px!important;} .video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;} .video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;} .video-gallery video{object-fit:contain;height:360px!important;width:300px!important;} .lora-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;} .lora-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;} .lora-gallery .gallery-item div{text-align:center;font-size:16px;color:#fff;} """ blk = gr.Blocks(css=css).queue() with blk: gr.Markdown("# 👻 GhostPack F1 Pro") with gr.Tabs(): with gr.TabItem("👻 Generate"): with gr.Row(): with gr.Column(): img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320) prm = gr.Textbox(label="Prompt") npr = gr.Textbox(label="Negative Prompt", value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth") save_msg = gr.Markdown("") lora_path = gr.Textbox( label="FastVideo LoRA Path or HF Repo", value="Kijai/HunyuanVideo_comfy", placeholder="e.g., Kijai/HunyuanVideo_comfy/hyvideo_FastVideo_LoRA-fp8.safetensors or /path/to/hyvideo_FastVideo_LoRA-fp8.safetensors" ) lora_weight = gr.Slider(label="LoRA Weight", minimum=0.5, maximum=1.5, value=1.0, step=0.1) disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False) lora_status_gen = gr.Markdown(value=auto_download_status) btn_save = gr.Button("Save Prompt") btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent") ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm]) ds.click(lambda x: x[0], [ds], [prm]) btn_save.click(save_prompt_fn, [prm, npr], [save_msg]) btn1.click(lambda: load_prompt_fn(0), [], [prm]) btn2.click(lambda: load_prompt_fn(1), [], [prm]) btn3.click(lambda: load_prompt_fn(2), [], [prm]) with gr.Row(): b_go, b_end = gr.Button("Start"), gr.Button("End", interactive=False) with gr.Group(): tea = gr.Checkbox(label="Use TeaCache", value=True) se = gr.Number(label="Seed", value=31337, precision=0) sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1) win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1) stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1) cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, visible=False) gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=5, step=0.01) rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01) kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1) crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1) with gr.Column(): pv = gr.Image(label="Next Latents", height=200, visible=False) vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False) log_md = gr.Markdown("") bar = gr.HTML("") b_go.click( process, [img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods], [vid, pv, log_md, bar, b_go, b_end, lora_status_gen] ) b_end.click(end_process) with gr.TabItem("🖼️ Image Gallery"): with gr.Row(elem_classes="media-container"): with gr.Column(scale=3): image_preview = gr.Image( label="Viewer", value=(list_images()[0] if list_images() else None), interactive=False, elem_classes="media-preview" ) with gr.Column(elem_classes="control-box"): image_dropdown = gr.Dropdown( choices=[os.path.basename(i) for i in list_images()], value=(os.path.basename(list_images()[0]) if list_images() else None), label="Select", elem_classes="styled-dropdown" ) with gr.Row(elem_classes="control-grid"): load_btn = gr.Button("Load", elem_classes="load-button") next_btn = gr.Button("Next", elem_classes="load-button") with gr.Row(elem_classes="control-grid"): refresh_btn = gr.Button("Refresh") delete_btn = gr.Button("Delete", elem_classes="orange-button") image_gallery = gr.Gallery( value=list_images(), label="Thumbnails", columns=6, height=360, allow_preview=False, type="filepath", elem_classes="image-gallery" ) load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown]) next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown]) refresh_btn.click(lambda: ( gr.update(choices=[os.path.basename(i) for i in list_images()], value=os.path.basename(list_images()[0]) if list_images() else None), gr.update(value=list_images()[0] if list_images() else None), gr.update(value=list_images()) ), [], [image_dropdown, image_preview, image_gallery]) delete_btn.click(lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""), [image_dropdown], [image_preview, image_dropdown]) image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown]) with gr.TabItem("🎬 Video Gallery"): with gr.Row(elem_classes="media-container"): with gr.Column(scale=3): video_preview = gr.Video( label="Viewer", value=(list_videos()[0] if list_videos() else None), autoplay=True, loop=True, interactive=False, elem_classes="media-preview" ) with gr.Column(elem_classes="control-box"): video_dropdown = gr.Dropdown( choices=[os.path.basename(v) for v in list_videos()], value=(os.path.basename(list_videos()[0]) if list_videos() else None), label="Select", elem_classes="styled-dropdown" ) with gr.Row(elem_classes="control-grid"): load_vbtn = gr.Button("Load", elem_classes="load-button") next_vbtn = gr.Button("Next", elem_classes="load-button") with gr.Row(elem_classes="control-grid"): refresh_v = gr.Button("Refresh") delete_v = gr.Button("Delete", elem_classes="orange-button") video_gallery = gr.Gallery( value=list_videos(), label="Thumbnails", columns=6, height=360, allow_preview=False, type="filepath", elem_classes="video-gallery" ) load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown]) next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown]) refresh_v.click(lambda: ( gr.update(choices=[os.path.basename(v) for v in list_videos()], value=os.path.basename(list_videos()[0]) if list_videos() else None), gr.update(value=list_videos()[0] if list_videos() else None), gr.update(value=list_videos()) ), [], [video_dropdown, video_preview, video_gallery]) delete_v.click(lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""), [video_dropdown], [video_preview, video_dropdown]) video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown]) with gr.TabItem("📦 LoRA Management"): with gr.Row(elem_classes="media-container"): with gr.Column(scale=3): lora_status = gr.Markdown("") with gr.Column(elem_classes="control-box"): lora_dropdown = gr.Dropdown( choices=[os.path.basename(l) for l in list_loras()], value=(os.path.basename(list_loras()[0]) if list_loras() else None), label="Select LoRA", elem_classes="styled-dropdown" ) with gr.Row(elem_classes="control-grid"): load_lora_btn = gr.Button("Load", elem_classes="load-button") next_lora_btn = gr.Button("Next", elem_classes="load-button") with gr.Row(elem_classes="control-grid"): refresh_lora_btn = gr.Button("Refresh") delete_lora_btn = gr.Button("Delete", elem_classes="orange-button") download_fastvideo_btn = gr.Button("Download FastVideo LoRA", elem_classes="big-setting-button") lora_gallery = gr.Gallery( value=[(l, os.path.basename(l)) for l in list_loras()], label="LoRA Files", columns=6, height=360, allow_preview=False, elem_classes="lora-gallery" ) load_lora_btn.click(load_lora_select, [lora_dropdown], [lora_path, lora_dropdown]) next_lora_btn.click(next_lora_and_load, [lora_dropdown], [lora_path, lora_dropdown]) refresh_lora_btn.click(lambda: ( gr.update(choices=[os.path.basename(l) for l in list_loras()], value=os.path.basename(list_loras()[0]) if list_loras() else None), gr.update(value=[(l, os.path.basename(l)) for l in list_loras()]) ), [], [lora_dropdown, lora_gallery]) delete_lora_btn.click(delete_lora, [lora_dropdown], [lora_status, lora_dropdown]) download_fastvideo_btn.click( lambda: auto_download_fastvideo_lora(), [], [lora_status] ) lora_gallery.select(gallery_lora_select, [], [lora_path, lora_dropdown]) with gr.TabItem("👻 About"): gr.Markdown("## GhostPack F1 Pro") with gr.Row(): with gr.Column(): gr.Markdown("**🛠️ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1") with gr.Column(): gr.Markdown("**📦 Version**\n2025-05-03") with gr.Column(): gr.Markdown("**✍️ Author**\nGhostAI") with gr.Column(): gr.Markdown("**🔗 Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack") with gr.TabItem("⚙️ Settings"): ct = gr.Button("Clear Temp", elem_classes="big-setting-button") ctmsg = gr.Markdown("") co = gr.Button("Clear Old", elem_classes="big-setting-button") comsg= gr.Markdown("") ci = gr.Button("Clear Images", elem_classes="big-setting-button") cimg= gr.Markdown("") cv = gr.Button("Clear Videos", elem_classes="big-setting-button") cvid= gr.Markdown("") ct.click(clear_temp_videos, [], ctmsg) co.click(clear_old_files, [], comsg) ci.click(clear_images, [], cimg) cv.click(clear_videos, [], cvid) with gr.TabItem("🛠️ Install"): xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers") bx = gr.Button("Install xformers", elem_classes="big-setting-button") ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn") bs = gr.Button("Install sage-attn", elem_classes="big-setting-button") fs = gr.Textbox(value=status_flash(),interactive=False, label="flash-attn") bf = gr.Button("Install flash-attn", elem_classes="big-setting-button") bx.click(install_xformers, [], xs) bs.click(install_sage_attn, [], ss) bf.click(install_flash_attn, [], fs) with gr.TabItem("📜 Logs"): logs = gr.Textbox(lines=20, interactive=False, label="Install Logs") rl = gr.Button("Refresh", elem_classes="big-setting-button") cl = gr.Button("Clear", elem_classes="big-setting-button") rl.click(refresh_logs, [], logs) cl.click(clear_logs, [], logs) # Force video previews to seek to 2s gr.HTML("""""") blk.launch( server_name=args.server, server_port=args.port, share=args.share, inbrowser=args.inbrowser )