Spaces:
Running
Running
File size: 39,307 Bytes
2fde0c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
#!/usr/bin/env python3
# ==========================================================
# FILE: ghostpack_gradio_f1.py
# ==========================================================
import os, sys, time, json, argparse, importlib.util, subprocess, traceback
import torch, einops, numpy as np
from PIL import Image
import io
import gradio as gr
import asyncio
from queue import Queue
from threading import Thread, Event
import re
import logging
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
SiglipImageProcessor, SiglipVisionModel
)
from diffusers_helper.hf_login import login
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
resize_and_center_crop, generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
DynamicSwapInstaller, unload_complete_models, load_model_as_complete
)
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
# Set up logging
logging.basicConfig(filename='/home/ubuntu/ghostpack/ghostpack.log', level=logging.ERROR, format='%(asctime)s %(levelname)s:%(message)s')
# MODIFIED: Added version number
VERSION = "1.0.0"
# ------------------------- CLI ----------------------------
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--server', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int)
parser.add_argument('--inbrowser', action='store_true')
parser.add_argument('--cli', action='store_true')
args = parser.parse_args()
# MODIFIED: Global state variables
render_progress = 0.0
render_status = "idle"
render_times = []
stream = None
start_render_time = None
BASE = os.path.abspath(os.path.dirname(__file__))
os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download')
if args.cli:
print("๐ป GhostPack F1 Pro CLI\n")
print("python ghostpack_gradio_f1.py # launch UI")
print("python ghostpack_gradio_f1.py --cli # show help\n")
sys.exit(0)
# ---------------------- Paths -----------------------------
OUT_BASE = os.path.join('/home/ubuntu/ghostpack', 'outputs')
OUT_IMG = os.path.join(OUT_BASE, 'img')
OUT_TEMP = os.path.join(OUT_BASE, 'tmp')
OUT_VID = os.path.join(OUT_BASE, 'vid')
OUT_DATA = os.path.join(OUT_BASE, 'data')
PROMPT_LOG = os.path.join(OUT_DATA, 'prompts.txt')
SAVED_PROMPTS = os.path.join(OUT_DATA, 'saved_prompts.json')
INSTALL_LOG = os.path.join(OUT_DATA, 'install_logs.txt')
LAST_CLEANUP_FILE = os.path.join(OUT_DATA, 'last_cleanup.txt')
VIDEO_INFO_JSON = os.path.join(OUT_DATA, 'video_info.json')
# MODIFIED: Create directories and initialize files with permissions
for d in (OUT_BASE, OUT_IMG, OUT_TEMP, OUT_VID, OUT_DATA):
try:
os.makedirs(d, exist_ok=True)
os.chmod(d, 0o775)
except Exception as e:
logging.error(f"Failed to create/chmod directory {d}: {e}")
if not os.path.exists(SAVED_PROMPTS):
try:
with open(SAVED_PROMPTS, 'w') as f:
json.dump([], f)
os.chmod(SAVED_PROMPTS, 0o664)
except Exception as e:
logging.error(f"Failed to create/chmod {SAVED_PROMPTS}: {e}")
if not os.path.exists(INSTALL_LOG):
try:
open(INSTALL_LOG, 'w').close()
os.chmod(INSTALL_LOG, 0o664)
except Exception as e:
logging.error(f"Failed to create/chmod {INSTALL_LOG}: {e}")
if not os.path.exists(PROMPT_LOG):
try:
open(PROMPT_LOG, 'w').close()
os.chmod(PROMPT_LOG, 0o664)
except Exception as e:
logging.error(f"Failed to create/chmod {PROMPT_LOG}: {e}")
if not os.path.exists(LAST_CLEANUP_FILE):
try:
with open(LAST_CLEANUP_FILE, 'w') as f:
f.write(str(time.time()))
os.chmod(LAST_CLEANUP_FILE, 0o664)
except Exception as e:
logging.error(f"Failed to create/chmod {LAST_CLEANUP_FILE}: {e}")
if not os.path.exists(VIDEO_INFO_JSON):
try:
with open(VIDEO_INFO_JSON, 'w') as f:
json.dump([], f)
os.chmod(VIDEO_INFO_JSON, 0o664)
except Exception as e:
logging.error(f"Failed to create/chmod {VIDEO_INFO_JSON}: {e}")
# ---------------- Prompt utils ---------------------------
def get_last_prompts():
try:
return json.load(open(SAVED_PROMPTS))[-5:][::-1]
except Exception as e:
logging.error(f"Failed to load prompts from {SAVED_PROMPTS}: {e}")
return []
def save_prompt_fn(prompt, n_p):
if not prompt:
return "โ No prompt"
try:
data = json.load(open(SAVED_PROMPTS))
entry = {'prompt': prompt, 'negative': n_p}
if entry not in data:
data.append(entry)
with open(SAVED_PROMPTS, 'w') as f:
json.dump(data, f)
os.chmod(SAVED_PROMPTS, 0o664)
return "โ
Saved"
except Exception as e:
logging.error(f"Failed to save prompt to {SAVED_PROMPTS}: {e}")
return "โ Save failed"
def load_prompt_fn(idx):
lst = get_last_prompts()
return lst[idx]['prompt'] if idx < len(lst) else ""
# ---------------- Cleanup utils --------------------------
def clear_temp_videos():
try:
for f in os.listdir(OUT_TEMP):
os.remove(os.path.join(OUT_TEMP, f))
return "โ
Temp cleared"
except Exception as e:
logging.error(f"Failed to clear temp videos in {OUT_TEMP}: {e}")
return "โ Clear failed"
def clear_old_files():
cutoff = time.time() - 7 * 24 * 3600
c = 0
try:
for d in (OUT_TEMP, OUT_IMG, OUT_VID, OUT_DATA):
for f in os.listdir(d):
p = os.path.join(d, f)
if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
os.remove(p)
c += 1
with open(LAST_CLEANUP_FILE, 'w') as f:
f.write(str(time.time()))
os.chmod(LAST_CLEANUP_FILE, 0o664)
return f"โ
{c} old files removed"
except Exception as e:
logging.error(f"Failed to clear old files: {e}")
return "โ Clear failed"
def clear_images():
try:
for f in os.listdir(OUT_IMG):
os.remove(os.path.join(OUT_IMG, f))
return "โ
Images cleared"
except Exception as e:
logging.error(f"Failed to clear images in {OUT_IMG}: {e}")
return "โ Clear failed"
def clear_videos():
try:
for f in os.listdir(OUT_VID):
os.remove(os.path.join(OUT_VID, f))
return "โ
Videos cleared"
except Exception as e:
logging.error(f"Failed to clear videos in {OUT_VID}: {e}")
return "โ Clear failed"
def check_and_run_weekly_cleanup():
try:
with open(LAST_CLEANUP_FILE, 'r') as f:
last_cleanup = float(f.read().strip())
except (FileNotFoundError, ValueError):
last_cleanup = 0
if time.time() - last_cleanup > 7 * 24 * 3600:
return clear_old_files()
return ""
# ---------------- Gallery helpers ------------------------
def list_images():
return sorted(
[os.path.join(OUT_IMG, f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png', '.jpg'))],
key=os.path.getmtime
)
def list_videos():
return sorted(
[os.path.join(OUT_VID, f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')],
key=os.path.getmtime
)
def load_image(sel):
imgs = list_images()
if sel in [os.path.basename(p) for p in imgs]:
pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
def load_video(sel):
vids = list_videos()
if sel in [os.path.basename(p) for p in vids]:
pth = vids[[os.path.basename(p) for p in vids].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
def next_image_and_load(sel):
imgs = list_images()
if not imgs:
return gr.update(), gr.update()
names = [os.path.basename(i) for i in imgs]
idx = (names.index(sel) + 1) % len(names) if sel in names else 0
pth = imgs[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
def next_video_and_load(sel):
vids = list_videos()
if not vids:
return gr.update(), gr.update()
names = [os.path.basename(v) for v in vids]
idx = (names.index(sel) + 1) % len(names) if sel in names else 0
pth = vids[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
def gallery_image_select(evt: gr.SelectData):
imgs = list_images()
if evt.index is not None and evt.index < len(imgs):
pth = imgs[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
def gallery_video_select(evt: gr.SelectData):
vids = list_videos()
if evt.index is not None and evt.index < len(vids):
pth = vids[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
# ---------------- Install status -------------------------
def check_mod(n): return importlib.util.find_spec(n) is not None
def status_xformers(): return "โ
xformers" if check_mod("xformers") else "โ xformers"
def status_sage(): return "โ
sage-attn" if check_mod("sageattention") else "โ sage-attn"
def status_flash(): return "โ
flash-attn" if check_mod("flash_attn") else "โ ๏ธ flash-attn"
def install_pkg(pkg, warn=None):
if warn:
print(warn)
time.sleep(1)
try:
out = subprocess.check_output(
[sys.executable, "-m", "pip", "install", pkg],
stderr=subprocess.STDOUT, text=True
)
res = f"โ
{pkg}\n{out}\n"
except subprocess.CalledProcessError as e:
res = f"โ {pkg}\n{e.output}\n"
with open(INSTALL_LOG, 'a') as f:
f.write(f"[{pkg}] {res}")
return res
install_xformers = lambda: install_pkg("xformers")
install_sage_attn = lambda: install_pkg("sage-attn")
install_flash_attn = lambda: install_pkg("flash-attn", "โ ๏ธ long compile")
refresh_logs = lambda: open(INSTALL_LOG).read()
clear_logs = lambda: (open(INSTALL_LOG, 'w').close() or "โ
Logs cleared")
# ---------------- Model load -----------------------------
free_mem = get_cuda_free_memory_gb(gpu)
hv = free_mem > 60
try:
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder', torch_dtype=torch.float16
).cpu().eval()
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2', torch_dtype=torch.float16
).cpu().eval()
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae', torch_dtype=torch.float16
).cpu().eval()
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder', torch_dtype=torch.float16
).cpu().eval()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"lllyasviel/FramePack_F1_I2V_HY_20250503",
torch_dtype=torch.bfloat16
).cpu().eval()
except Exception as e:
logging.error(f"Failed to load models: {e}")
raise
if not hv:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
transformer.to(dtype=torch.bfloat16)
for m in (vae, image_encoder, text_encoder, text_encoder_2):
m.to(dtype=torch.float16)
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
m.requires_grad_(False)
if not hv:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer):
m.to(gpu)
class AsyncStream:
def __init__(self):
self.input_queue = Queue()
self.output_queue = Queue()
self.stop_event = Event()
def put(self, item):
self.output_queue.put(item)
def get(self):
return self.output_queue.get()
def is_stopped(self):
return self.stop_event.is_set()
def stop(self):
self.stop_event.set()
self.input_queue.put("end")
# ---------------- Worker -------------------------------
@torch.no_grad()
def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, camera_action="Static Camera"):
global render_progress, render_status, render_times, start_render_time, stream
start_render_time = time.time()
render_status = "rendering"
render_progress = 0.0
stream = AsyncStream()
# Validate prompt for smoothness, stop, and silence, and append camera action
if "stop" not in prompt.lower() and secs > 5:
prompt += " The subject stops moving after 5 seconds."
if "smooth" not in prompt.lower():
prompt = f"Smooth animation: {prompt}"
if "silent" not in prompt.lower():
prompt += ", silent"
prompt = update_prompt(prompt, camera_action)
if len(prompt.split()) > 50:
print("Warning: Complex prompt may slow rendering or cause instability.")
# Check VRAM availability
if get_cuda_free_memory_gb(gpu) < 2:
render_status = "error"
logging.error("Low VRAM (<2GB). Lower 'kee' or 'win'.")
raise Exception("Low VRAM (<2GB). Lower 'kee' or 'win'.")
sections = max(round((secs * 30) / (win * 4)), 1)
jid = generate_timestamp()
try:
with open(PROMPT_LOG, 'a') as f:
f.write(f"{jid}\t{prompt}\t{n_p}\n")
os.chmod(PROMPT_LOG, 0o664)
except Exception as e:
logging.error(f"Failed to write to {PROMPT_LOG}: {e}")
stream.put(('progress', (None, "", ProgressBar().make_progress_bar_html(0, "Start"))))
try:
if not hv:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, gpu)
lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
lv_n = torch.zeros_like(lv)
cp_n = torch.zeros_like(cp)
else:
lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
lv, m = crop_or_pad_yield_mask(lv, 512)
lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
H, W, _ = img.shape
h, w = find_nearest_bucket(H, W, 640)
img_np = resize_and_center_crop(img, w, h)
img_filename = f"{jid}.png"
try:
Image.fromarray(img_np).save(os.path.join(OUT_IMG, img_filename))
os.chmod(os.path.join(OUT_IMG, img_filename), 0o664)
except Exception as e:
logging.error(f"Failed to save image {img_filename}: {e}")
raise
img_pt = (torch.from_numpy(img_np).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None]
if not hv:
load_model_as_complete(vae, gpu)
start_lat = vae_encode(img_pt, vae)
if not hv:
load_model_as_complete(image_encoder, gpu)
img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
gen = torch.Generator("cpu").manual_seed(seed)
hist_lat = torch.zeros((1, 16, 1 + 2 + 16, h // 8, w // 8), dtype=torch.float32).cpu()
hist_px = None
total = 0
pad_seq = [3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections)))
section_index = 0
for pad in pad_seq:
if stream.is_stopped():
render_status = "stopped"
stream.put(("stopped", None))
return None
last = pad == 0
pad_sz = pad * win
idx = torch.arange(0, sum([1, pad_sz, win, 1, 2, 16]))[None]
a, b, c, d, e, f = idx.split([1, pad_sz, win, 1, 2, 16], 1)
clean_idx = torch.cat([a, d], 1)
pre = start_lat.to(hist_lat)
post, two, four = hist_lat[:, :, :1 + 2 + 16].split([1, 2, 16], 2)
clean = torch.cat([pre, post], 2)
if not hv:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, gpu, keep)
transformer.initialize_teacache(tea, stp)
def cb(d):
global render_progress
pv = vae_decode_fake(d["denoised"])
pv = (pv * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
pv = einops.rearrange(pv, "b c t h w->(b h)(t w)c")
cur = d["i"] + 1
render_progress = (cur / stp) * 100
stream.put(('progress', (pv, f"{cur}/{stp}", ProgressBar().make_progress_bar_html(int(100 * cur / stp), f"{cur}/{stp}"))))
if stream.is_stopped():
stream.put(("stopped", None))
raise KeyboardInterrupt
new_lat = sample_hunyuan(
transformer=transformer, sampler="unipc", width=w, height=h, frames=win * 4 - 3,
real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
num_inference_steps=stp, generator=gen,
prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
clean_latents_2x=two, clean_latent_2x_indices=e,
clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
)
if last:
new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2)
total += new_lat.shape[2]
hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2)
if not hv:
offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
load_model_as_complete(vae, gpu)
real = hist_lat[:, :, :total]
if hist_px is None:
hist_px = vae_decode(real, vae).cpu()
else:
overlap = win * 4 - 3
curr = vae_decode(real[:, :, :win * 2], vae).cpu()
hist_px = soft_append_bcthw(curr, hist_px, overlap)
if not hv:
unload_complete_models()
tmp_filename = f"{jid}_{total}.mp4"
tmp = os.path.join(OUT_TEMP, tmp_filename)
try:
save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf)
os.chmod(tmp, 0o664)
except Exception as e:
logging.error(f"Failed to save video {tmp}: {e}")
raise
stream.put(('file', tmp))
section_index += 1
if last:
fin_filename = f"{jid}_{total}.mp4"
fin = os.path.join(OUT_VID, fin_filename)
try:
os.replace(tmp, fin)
os.chmod(fin, 0o664)
save_video_info(prompt, n_p, fin_filename, seed, secs, None)
stream.put(('complete', fin))
render_status = "complete"
end_time = time.time()
render_time = end_time - start_render_time
render_times.append(render_time)
if len(render_times) > 3:
render_times.pop(0)
return fin
except Exception as e:
logging.error(f"Failed to finalize video {fin}: {e}")
raise
except Exception as e:
traceback.print_exc()
render_status = "error"
stream.put(("stopped", str(e)))
logging.error(f"Worker failed: {e}")
return None
finally:
render_progress = 0.0
start_render_time = None
@torch.no_grad()
def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf):
global stream
if img is None:
yield None, None, "Please upload an image to proceed.", "", gr.update(interactive=False), gr.update(interactive=True)
return
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
future = loop.run_in_executor(None, lambda: worker(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf))
out, log = None, ""
while True:
try:
if stream and not stream.output_queue.empty():
flag, data = stream.get()
if flag == "file":
out = data
yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True)
elif flag == "progress":
pv, desc, html = data
log = desc
yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True)
elif flag in ("complete", "stopped", "end"):
yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
logging.error(f"Error in process queue: {e}")
yield None, gr.update(visible=False), "Error occurred during processing.", "", gr.update(interactive=True), gr.update(interactive=False)
break
finally:
loop.close()
def end_process():
if stream:
stream.stop()
# ------------------- UI ------------------------------
quick_prompts = [
["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
["Smooth animation: A character moves for 5 seconds, static camera, silent."]
]
css = """
.orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
.load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
.big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
.styled-dropdown{width:250px;padding:5px;border-radius:4px;}
.viewer-column{width:100%;max-width:900px;margin:0 auto;}
.media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
.media-container{display:flex;gap:20px;align-items:flex-start;}
.control-box{min-width:220px;}
.control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
.image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
.video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
.stop-button {background-color: #ff4d4d !important; color: white !important;}
.progress-bar {
width: 100%;
height: 20px;
background-color: #444;
border-radius: 10px;
overflow: hidden;
}
.progress-bar-fill {
height: 100%;
background-color: #ff6200;
border-radius: 10px;
transition: width 0.3s ease-in-out;
}
"""
blk = gr.Blocks(css=css, title="GhostPack F1 Pro").queue()
with blk:
gr.Markdown("# ๐ป GhostPack F1 Pro")
with gr.Tabs():
with gr.TabItem("๐ป Generate"):
with gr.Row():
with gr.Column():
img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
generate_button = gr.Button("Generate Video", elem_id="generate_button")
stop_button = gr.Button("Stop Generation", elem_id="stop_button", elem_classes="stop-button")
prm = gr.Textbox(
label="Prompt",
value="Smooth animation: A female stands with subtle, sensual micro-movements, breathing gently, slight head tilt, static camera, silent",
elem_id="prompt_input"
)
npr = gr.Textbox(
label="Negative Prompt",
value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth",
elem_id="negative_prompt_input"
)
save_msg = gr.Markdown("")
btn_save = gr.Button("Save Prompt")
btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent")
ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
ds.click(lambda x: x[0], [ds], [prm])
btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
btn1.click(lambda: load_prompt_fn(0), [], [prm])
btn2.click(lambda: load_prompt_fn(1), [], [prm])
btn3.click(lambda: load_prompt_fn(2), [], [prm])
with gr.Column():
pv = gr.Image(label="Next Latents", height=200, visible=False)
vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
log_md = gr.Markdown("")
bar = gr.HTML("")
with gr.Column():
se = gr.Number(label="Seed", value=31337, precision=0, elem_id="seed_input")
sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1, elem_id="video_length_input")
win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1, elem_id="latent_window_input")
stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=12, step=1, elem_id="steps_input")
cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, elem_id="cfg_input", visible=False)
gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=7, step=0.1, elem_id="distilled_cfg_input")
rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.7, step=0.01, elem_id="cfg_rescale_input")
kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1, elem_id="gpu_keep_input")
crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1, elem_id="mp4_crf_input")
tea = gr.Checkbox(label="Use TeaCache", value=True, elem_id="use_teacache_input")
generate_button.click(
fn=process,
inputs=[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf],
outputs=[vid, pv, log_md, bar, generate_button, stop_button]
)
stop_button.click(fn=end_process)
gr.Button("Update Progress").click(
fn=get_progress,
outputs=[log_md, bar]
)
with gr.TabItem("๐ผ๏ธ Image Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
image_preview = gr.Image(
label="Viewer",
value=(list_images()[0] if list_images() else None),
interactive=False, elem_classes="media-preview"
)
with gr.Column(elem_classes="control-box"):
image_dropdown = gr.Dropdown(
choices=[os.path.basename(i) for i in list_images()],
value=(os.path.basename(list_images()[0]) if list_images() else None),
label="Select", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_btn = gr.Button("Load", elem_classes="load-button")
next_btn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_btn = gr.Button("Refresh")
delete_btn = gr.Button("Delete", elem_classes="orange-button")
image_gallery = gr.Gallery(
value=list_images(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="image-gallery"
)
load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
refresh_btn.click(
lambda: (
gr.update(choices=[os.path.basename(i) for i in list_images()],
value=os.path.basename(list_images()[0]) if list_images() else None),
gr.update(value=list_images()[0] if list_images() else None),
gr.update(value=list_images())
),
[],
[image_dropdown, image_preview, image_gallery]
)
delete_btn.click(
lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""),
[image_dropdown],
[image_preview, image_dropdown]
)
image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])
with gr.TabItem("๐ฌ Video Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
video_preview = gr.Video(
label="Viewer",
value=(list_videos()[0] if list_videos() else None),
autoplay=True, loop=True, interactive=False, elem_classes="media-preview"
)
with gr.Column(elem_classes="control-box"):
video_dropdown = gr.Dropdown(
choices=[os.path.basename(v) for v in list_videos()],
value=(os.path.basename(list_videos()[0]) if list_videos() else None),
label="Select", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_vbtn = gr.Button("Load", elem_classes="load-button")
next_vbtn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_v = gr.Button("Refresh")
delete_v = gr.Button("Delete", elem_classes="orange-button")
video_gallery = gr.Gallery(
value=list_videos(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="video-gallery"
)
load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
refresh_v.click(
lambda: (
gr.update(choices=[os.path.basename(v) for v in list_videos()],
value=os.path.basename(list_videos()[0]) if list_videos() else None),
gr.update(value=list_videos()[0] if list_videos() else None),
gr.update(value=list_videos())
),
[],
[video_dropdown, video_preview, video_gallery]
)
delete_v.click(
lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""),
[video_dropdown],
[video_preview, video_dropdown]
)
video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])
with gr.TabItem("๐ป About"):
gr.Markdown("## GhostPack F1 Pro")
with gr.Row():
with gr.Column():
gr.Markdown("**๐ ๏ธ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
with gr.Column():
gr.Markdown(f"**๐ฆ Version**\n{VERSION}")
with gr.Column():
gr.Markdown("**โ๏ธ Author**\nGhostAI")
with gr.Column():
gr.Markdown("**๐ Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack")
with gr.TabItem("โ๏ธ Settings"):
ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
ctmsg = gr.Markdown("")
co = gr.Button("Clear Old", elem_classes="big-setting-button")
comsg = gr.Markdown("")
ci = gr.Button("Clear Images", elem_classes="big-setting-button")
cimg = gr.Markdown("")
cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
cvid = gr.Markdown("")
ct.click(clear_temp_videos, [], ctmsg)
co.click(clear_old_files, [], comsg)
ci.click(clear_images, [], cimg)
cv.click(clear_videos, [], cvid)
with gr.TabItem("๐ ๏ธ Install"):
xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
bx = gr.Button("Install xformers", elem_classes="big-setting-button")
ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
fs = gr.Textbox(value=status_flash(), interactive=False, label="flash-attn")
bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
bx.click(install_xformers, [], xs)
bs.click(install_sage_attn, [], ss)
bf.click(install_flash_attn, [], fs)
with gr.TabItem("๐ Logs"):
logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
rl = gr.Button("Refresh", elem_classes="big-setting-button")
cl = gr.Button("Clear", elem_classes="big-setting-button")
rl.click(refresh_logs, [], logs)
cl.click(clear_logs, [], logs)
# Force video previews to seek to 2s
gr.HTML("""
<script>
document.querySelectorAll('.video-gallery video').forEach(v => {
v.addEventListener('loadedmetadata', () => {
if (v.duration > 2) v.currentTime = 2;
});
});
</script>
""")
# Camera action update
camera_action_input = gr.Dropdown(
choices=[
"Static Camera",
"Slight Orbit Left",
"Slight Orbit Right",
"Slight Orbit Up",
"Slight Orbit Down",
"Top-Down View",
"Slight Zoom In",
"Slight Zoom Out"
],
label="Camera Action",
value="Static Camera",
elem_id="camera_action_input",
info="Select a camera movement to append to the prompt."
)
camera_action_input.change(
fn=lambda prompt, camera_action: update_prompt(prompt, camera_action),
inputs=[prm, camera_action_input],
outputs=prm
)
def update_prompt(prompt, camera_action):
# Remove existing camera action from prompt
camera_actions = [
"static camera", "slight camera orbit left", "slight camera orbit right",
"slight camera orbit up", "slight camera orbit down", "top-down view",
"slight camera zoom in", "slight camera zoom out"
]
for action in camera_actions:
prompt = re.sub(rf',\s*{re.escape(action)}\b', '', prompt, flags=re.IGNORECASE).strip()
# Append selected camera action
if camera_action and camera_action != "None":
camera_phrase = f", {camera_action.lower()}"
if len(prompt.split()) + len(camera_phrase.split()) <= 50:
return prompt + camera_phrase
else:
logging.warning(f"Prompt exceeds 50 words after adding camera action: {prompt}")
return prompt
def get_progress():
markdown_text = f"Status: {render_status}\nProgress: {render_progress:.1f}%\nLast Render Time: {render_times[-1] if render_times else 0:.1f}s"
progress_bar_html = ProgressBar().make_progress_bar_html(int(render_progress), f"{int(render_progress)}%")
return markdown_text, progress_bar_html
class ProgressBar:
def make_progress_bar_css(self):
return """
.progress-bar {
width: 100%;
height: 20px;
background-color: #444;
border-radius: 10px;
overflow: hidden;
}
.progress-bar-fill {
height: 100%;
background-color: #ff6200;
border-radius: 10px;
transition: width 0.3s ease-in-out;
}
"""
def make_progress_bar_html(self, percentage, label):
css = self.make_progress_bar_css()
fill_width = f"{percentage}%"
html = f"""
<style>{css}</style>
<div class="progress-bar">
<div class="progress-bar-fill" style="width: {fill_width};">
<span style="color: white; position: absolute; margin-left: 10px;">{label}</span>
</div>
</div>
"""
return html
blk.launch(
server_name=args.server,
server_port=args.port,
share=args.share,
inbrowser=args.inbrowser
) |