File size: 22,171 Bytes
7d79c17
 
 
 
6e6a051
7d79c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04fba1b
7d79c17
 
 
 
6e6a051
7d79c17
 
6e6a051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d79c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6a051
7d79c17
 
 
 
6e6a051
 
 
 
 
 
 
 
 
 
 
7d79c17
 
 
6e6a051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d79c17
 
 
 
 
6e6a051
 
7d79c17
 
6e6a051
 
 
 
7d79c17
 
 
 
 
 
 
 
 
 
 
 
6e6a051
 
7d79c17
 
6e6a051
7d79c17
 
 
 
 
 
 
 
 
 
6e6a051
7d79c17
 
6e6a051
 
 
7d79c17
 
 
 
 
 
 
 
 
 
 
6e6a051
7d79c17
6e6a051
7d79c17
6e6a051
 
7d79c17
6e6a051
7d79c17
6e6a051
7d79c17
6e6a051
7d79c17
6e6a051
 
 
7d79c17
6e6a051
 
7d79c17
 
 
 
 
 
6e6a051
7d79c17
 
6e6a051
 
7d79c17
6e6a051
7d79c17
 
 
 
 
 
 
 
6e6a051
 
 
 
 
 
 
 
7d79c17
 
 
6e6a051
 
 
7d79c17
6e6a051
 
 
 
 
7d79c17
 
 
 
 
6e6a051
 
 
 
 
7d79c17
 
 
6e6a051
 
7d79c17
6e6a051
 
 
7d79c17
6e6a051
 
 
 
 
 
 
 
 
 
 
7d79c17
 
 
 
 
6e6a051
7d79c17
 
6e6a051
 
7d79c17
 
 
 
 
 
 
 
 
 
 
6e6a051
 
 
 
 
 
 
 
 
 
7d79c17
 
 
 
 
 
6e6a051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d79c17
6e6a051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d79c17
 
6e6a051
 
 
 
 
 
 
 
 
 
 
7d79c17
 
 
6e6a051
7d79c17
 
6e6a051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d79c17
 
 
 
04fba1b
 
6e6a051
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#!/usr/bin/env python3
# ---------------------------------------------------------------------------
# RELEASE – GhostPack Video Generator (πŸ“Έ Showcase Tab Polished)
# ---------------------------------------------------------------------------
import os, sys, argparse, random, traceback, json, logging
import numpy as np, torch, einops, gradio as gr
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
    LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
    SiglipImageProcessor, SiglipVisionModel,
)
from diffusers_helper.hunyuan import (
    encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake,
)
from diffusers_helper.utils import (
    save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
    resize_and_center_crop, generate_timestamp,
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
    gpu, get_cuda_free_memory_gb, DynamicSwapInstaller,
    unload_complete_models, load_model_as_complete,
    fake_diffusers_current_device, move_model_to_device_with_memory_preservation,
    offload_model_from_device_for_memory_preservation,
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket

# ---------------------------------------------------------------------------
# SETUP LOGGING & TCMALLOC DETECTION
# ---------------------------------------------------------------------------
BASE = os.path.abspath(os.path.dirname(__file__))
LOG_PATH = os.path.join(BASE, "ghostpack.log")
logging.basicConfig(
    level=logging.INFO,
    format='[%(asctime)s] %(levelname)s - %(message)s',
    handlers=[logging.FileHandler(LOG_PATH), logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

def detect_tcmalloc():
    try:
        with open('/proc/self/maps', 'r') as f:
            return 'tcmalloc' in f.read()
    except Exception:
        return False

logger.info(f"TCMalloc loaded: {detect_tcmalloc()}")

# ---------------------------------------------------------------------------
# SETTINGS
# ---------------------------------------------------------------------------
SETTINGS_PATH = os.path.join(BASE, "settings.json")
default_settings = {
    "latent_window": 9,
    "cfg_scale": 1.0,
    "cfg_rescale": 0.0,
    "gpu_keep": 6.0,
    "enable_teacache": True,
    "mp4_crf": 16
}
try:
    with open(SETTINGS_PATH, "r") as f:
        loaded = json.load(f)
        settings = loaded if isinstance(loaded, dict) else default_settings
except:
    settings = default_settings

def save_settings(lw, cs, cr, gk, teac, crf):
    s = {
        "latent_window": lw,
        "cfg_scale": cs,
        "cfg_rescale": cr,
        "gpu_keep": gk,
        "enable_teacache": teac,
        "mp4_crf": crf
    }
    with open(SETTINGS_PATH, "w") as f:
        json.dump(s, f, indent=2)
    return "βœ… Settings saved!"

def load_logs():
    if os.path.exists(LOG_PATH):
        with open(LOG_PATH, "r") as f:
            return f.read()
    return "No logs found."

# ---------------------------------------------------------------------------
# ENV / CACHE
# ---------------------------------------------------------------------------
CACHE = os.path.join(BASE, "hf_download")
os.makedirs(CACHE, exist_ok=True)
for _v in ("HF_HOME", "TRANSFORMERS_CACHE", "HF_DATASETS_CACHE"):
    os.environ[_v] = CACHE
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"

# ---------------------------------------------------------------------------
# CLI
# ---------------------------------------------------------------------------
ap = argparse.ArgumentParser()
ap.add_argument("--share", action="store_true")
ap.add_argument("--server", default="0.0.0.0")
ap.add_argument("--port", type=int, default=7860)
ap.add_argument("--inbrowser", action="store_true")
args = ap.parse_args()

# ---------------------------------------------------------------------------
# VRAM
# ---------------------------------------------------------------------------
free_gb = get_cuda_free_memory_gb(gpu)
hi_vram = free_gb > 60
logger.info(f"[GhostPack] Free VRAM: {free_gb:.1f} GB | High-VRAM: {hi_vram}")

# ---------------------------------------------------------------------------
# MODEL LOAD
# ---------------------------------------------------------------------------
def llm(sf):
    return LlamaModel.from_pretrained(
        "hunyuanvideo-community/HunyuanVideo",
        subfolder=sf, torch_dtype=torch.float16
    ).cpu().eval()

def clip(sf):
    return CLIPTextModel.from_pretrained(
        "hunyuanvideo-community/HunyuanVideo",
        subfolder=sf, torch_dtype=torch.float16
    ).cpu().eval()

text_enc  = llm("text_encoder")
text_enc2 = clip("text_encoder_2")
tok       = LlamaTokenizerFast.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer"
)
tok2      = CLIPTokenizer.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2"
)
vae       = AutoencoderKLHunyuanVideo.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16
).cpu().eval()
feat_ext  = SiglipImageProcessor.from_pretrained(
    "lllyasviel/flux_redux_bfl", subfolder="feature_extractor"
)
img_enc   = SiglipVisionModel.from_pretrained(
    "lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16
).cpu().eval()
trans     = HunyuanVideoTransformer3DModelPacked.from_pretrained(
    "lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16
).cpu().eval()
trans.high_quality_fp32_output_for_inference = True

if not hi_vram:
    vae.enable_slicing(); vae.enable_tiling()
else:
    for m in (text_enc, text_enc2, img_enc, vae, trans):
        m.to(gpu)

trans.to(dtype=torch.bfloat16)
for m in (vae, img_enc, text_enc, text_enc2):
    m.to(dtype=torch.float16)
for m in (vae, img_enc, text_enc, text_enc2, trans):
    m.requires_grad_(False)
if not hi_vram:
    DynamicSwapInstaller.install_model(trans, device=gpu)
    DynamicSwapInstaller.install_model(text_enc, device=gpu)

OUT = os.path.join(BASE, "outputs")
os.makedirs(OUT, exist_ok=True)
stream = AsyncStream()

# ---------------------------------------------------------------------------
# DEMO IMAGE
# ---------------------------------------------------------------------------
demo_path = os.path.join(BASE, "img", "demo.png")
demo_np = np.array(Image.open(demo_path).convert("RGB")) \
    if os.path.exists(demo_path) else None

# ---------------------------------------------------------------------------
# WORKER & WRAPPER
# ---------------------------------------------------------------------------
@torch.no_grad()
def worker(img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf):
    if sd == -1:
        sd = random.randint(0, 2**31 - 1)
    sections = max(round((secs * 30) / (win * 4)), 1)
    job = generate_timestamp()
    stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Start"))))
    try:
        if not hi_vram:
            unload_complete_models(text_enc, text_enc2, img_enc, vae, trans)
            fake_diffusers_current_device(text_enc, gpu)
            load_model_as_complete(text_enc2, gpu)
        lv, cp    = encode_prompt_conds(p, text_enc, text_enc2, tok, tok2)
        lv_n, cp_n= (torch.zeros_like(lv), torch.zeros_like(cp)) \
            if cfg == 1 else encode_prompt_conds(n_p, text_enc, text_enc2, tok, tok2)
        lv, m     = crop_or_pad_yield_mask(lv, 512)
        lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
        H, W, _   = img.shape
        h, w      = find_nearest_bucket(H, W, 640)
        img_np    = resize_and_center_crop(img, w, h)
        Image.fromarray(img_np).save(os.path.join(OUT, f"{job}.png"))
        img_pt    = torch.from_numpy(img_np).float() / 127.5 - 1
        img_pt    = img_pt.permute(2, 0, 1)[None, :, None]
        if not hi_vram: load_model_as_complete(vae, gpu)
        start_lat = vae_encode(img_pt, vae)
        if not hi_vram: load_model_as_complete(img_enc, gpu)
        img_hidden= hf_clip_vision_encode(img_np, feat_ext, img_enc).last_hidden_state
        to = trans.dtype
        lv, lv_n, cp, cp_n, img_hidden = [x.to(to) for x in (lv, lv_n, cp, cp_n, img_hidden)]
        gen = torch.Generator("cpu").manual_seed(sd)
        frames   = win * 4 - 3
        hist_lat = torch.zeros((1,16,19,h//8,w//8), dtype=torch.float32).cpu()
        hist_px, total = None, 0
        pad_seq = [3] + [2]*(sections-3) + [1,0] if sections>4 else list(reversed(range(sections)))
        for pad in pad_seq:
            last = (pad == 0)
            if stream.input_queue.top() == "end":
                stream.output_queue.push(("end", None)); return
            pad_sz = pad * win
            idx = torch.arange(0, sum([1,pad_sz,win,1,2,16])).unsqueeze(0)
            a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
            clean_idx = torch.cat([a,d],1)
            pre = start_lat.to(hist_lat)
            post,two,four = hist_lat[:,:,:19].split([1,2,16],2)
            clean = torch.cat([pre,post],2)
            if not hi_vram:
                unload_complete_models()
                move_model_to_device_with_memory_preservation(trans, gpu, keep)
            trans.initialize_teacache(tea, stp)
            def cb(d):
                pv = vae_decode_fake(d["denoised"])
                pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
                pv = einops.rearrange(pv, "b c t h w->(b h)(t w)c")
                cur = d["i"] + 1
                stream.output_queue.push(("progress", (pv, f"{total*4-3}f",
                                                       make_progress_bar_html(int(100*cur/stp), f"{cur}/{stp}"))))
                if stream.input_queue.top() == "end":
                    stream.output_queue.push(("end", None)); raise KeyboardInterrupt
            new_lat = sample_hunyuan(
                transformer=trans, sampler="unipc", width=w, height=h, frames=frames,
                real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
                num_inference_steps=stp, generator=gen,
                prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
                negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
                device=gpu, dtype=torch.bfloat16, image_embeddings=img_hidden,
                latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
                clean_latents_2x=two, clean_latent_2x_indices=e,
                clean_latents_4x=four, clean_latent_4x_indices=f,
                callback=cb
            )
            if last:
                new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2)
            total += new_lat.shape[2]
            hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2)
            if not hi_vram:
                offload_model_from_device_for_memory_preservation(trans, gpu, 8)
                load_model_as_complete(vae, gpu)
            real = hist_lat[:,:,:total]
            if hist_px is None:
                hist_px = vae_decode(real, vae).cpu()
            else:
                sec_lat = win*2 + 1 if last else win*2
                cur_px = vae_decode(real[:,:,:sec_lat], vae).cpu()
                hist_px = soft_append_bcthw(cur_px, hist_px, win*4-3)
            if not hi_vram:
                unload_complete_models()
            mp4 = os.path.join(OUT, f"{job}_{total}.mp4")
            save_bcthw_as_mp4(hist_px, mp4, fps=30, crf=crf)
            stream.output_queue.push(("file", mp4))
            if last: break
    except Exception:
        traceback.print_exc()
        stream.output_queue.push(("end", None))

def wrapper(*args):
    yield from wrapper_logic(*args)

def wrapper_logic(img,p,n_p,sd,secs,win,stp,cfg,gsc,rsc,keep,tea,crf):
    global stream
    if img is None:
        raise gr.Error("Upload an image.")
    yield None,None,"","","",gr.update(interactive=False),gr.update(interactive=True)
    stream = AsyncStream()
    async_run(worker, img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf)
    out, log = None, ""
    while True:
        flag, data = stream.output_queue.next()
        if flag == "file":
            out = data
            yield out, gr.update(), gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True)
        if flag == "progress":
            pv, desc, html = data
            log = desc
            yield gr.update(), gr.update(visible=True, value=pv), desc, html, log, gr.update(interactive=False), gr.update(interactive=True)
        if flag == "end":
            yield out, gr.update(visible=False), gr.update(), "", log, gr.update(interactive=True), gr.update(interactive=False)
            break

# ---------------------------------------------------------------------------
# UI
# ---------------------------------------------------------------------------
def run_ui():
    css = make_progress_bar_css() + """
    body,.gradio-container{background:#111821;color:#eee;font-family:Roboto,Arial,sans-serif}
    .gr-button,.gr-button-primary{background:#006dff;border:#006dff;font-size:16px;padding:10px 22px}
    .gr-button-primary.save{background:#28a745;border:#28a745}
    .gr-button-primary.save:hover{background:#3ec06d;border:#3ec06d}
    .gr-button:hover,.gr-button-primary:hover{background:#0099ff;border:#0099ff}
    input,textarea,.gr-input,.gr-textbox,.gr-slider,.gr-number{background:#1e1e1e;color:#eee;border-color:#006dff}
    .info-grid{display:grid;grid-template-columns:repeat(auto-fit,minmax(320px,1fr));gap:24px;margin-top:20px}
    .info-card{background:#0d1b2a;padding:28px;border:2px solid #0099ff;border-radius:14px;box-shadow:0 0 18px #000a}
    .info-card h2{margin:0 0 16px 0;color:#00e6ff;font-size:26px}
    .info-card p{margin:0 0 18px 0;line-height:1.6}
    .info-card ul,ol{margin:0;padding-left:22px}
    .info-card li{margin-bottom:12px}
    .info-card a{color:#37c4ff;text-decoration:none;font-weight:600}
    .info-card a:hover{text-decoration:underline;color:#6fe0ff}
    """
    positive_examples = [
        ["A neon specter gliding through a cyberpunk cityscape at dusk."],
        ["An astronaut exploring an alien jungle on Mars."],
        ["A brave knight facing a dragon in a stormy courtyard."],
        ["A futuristic city skyline at night with flying cars."]
    ]
    negative_examples = [
        ["low quality, blurry, watermark, distorted, deformed"]
    ]
    blk = gr.Blocks(css=css).queue()
    with blk:
        gr.Markdown("## πŸ‘» **GhostPack – Phantom Float Math Edition**")
        with gr.Tabs():
            with gr.TabItem("πŸŽ›οΈ Generator"):
                with gr.Row():
                    with gr.Column(scale=6):
                        img = gr.Image(sources=["upload"], type="numpy", label="Input Image", height=360, value=demo_np)
                        prm = gr.Textbox(label="Prompt", placeholder="Enter positive prompt")
                        ds_pos = gr.Dataset(samples=positive_examples, label="🎨 Quick Prompts", components=[prm])
                        ds_pos.click(lambda x: x[0], inputs=[ds_pos], outputs=[prm])
                        npr = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt")
                        ds_neg = gr.Dataset(samples=negative_examples, label="🚫 Neg Prompts", components=[npr])
                        ds_neg.click(lambda x: x[0], inputs=[ds_neg], outputs=[npr])
                        se  = gr.Number(label="Seed", value=-1, precision=0, minimum=-1)
                        sec = gr.Slider(label="Length (s)", minimum=1, maximum=120, value=5, step=0.1)
                        win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=settings["latent_window"], step=1)
                        stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
                        cfg = gr.Slider(label="CFG Scale", minimum=1, maximum=32, value=settings["cfg_scale"], step=0.01)
                        gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=settings["cfg_scale"], step=0.01)
                        rsc = gr.Slider(label="Guidance Rescale", minimum=0, maximum=1, value=settings["cfg_rescale"], step=0.01)
                        keep = gr.Slider(label="GPU Keep (GB)", minimum=6, maximum=128, value=settings["gpu_keep"], step=0.1)
                        tea  = gr.Checkbox(label="Use TeaCache", value=settings["enable_teacache"])
                        crf  = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=settings["mp4_crf"], step=1)
                        b_go, b_end = gr.Button("Start πŸš€"), gr.Button("End", interactive=False)
                    with gr.Column(scale=5):
                        vid = gr.Video(label="Output Video", autoplay=True, height=540, loop=True)
                        log = gr.Markdown()
                inputs = [img, prm, npr, se, sec, win, stp, cfg, gsc, rsc, keep, tea, crf]
                b_go.click(fn=wrapper, inputs=inputs, outputs=[vid, gr.Image(visible=False), gr.Markdown(), gr.HTML(), log, b_go, b_end])
                b_end.click(fn=lambda: stream.input_queue.push("end"))
            with gr.TabItem("βš™οΈ Settings"):
                gr.Markdown("### βš™οΈ Advanced Settings & Save")
                lw   = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=settings["latent_window"], step=1)
                cs   = gr.Slider(label="CFG Scale", minimum=1, maximum=32, value=settings["cfg_scale"], step=0.01)
                cr   = gr.Slider(label="CFG Rescale", minimum=0, maximum=1, value=settings["cfg_rescale"], step=0.01)
                gk   = gr.Slider(label="GPU Keep (GB)", minimum=6, maximum=128, value=settings["gpu_keep"], step=0.1)
                te_s = gr.Checkbox(label="Enable TeaCache", value=settings["enable_teacache"])
                crf_s= gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=settings["mp4_crf"], step=1)
                save_btn = gr.Button("Save Settings βœ…", elem_classes="save")
                save_status = gr.Markdown("")
                save_btn.click(fn=save_settings, inputs=[lw, cs, cr, gk, te_s, crf_s], outputs=[save_status])
            with gr.TabItem("πŸ“ Logs"):
                gr.Markdown("### πŸ“ GhostPack Logs")
                log_area = gr.Textbox(label="Logs", lines=20, interactive=False, value=load_logs())
                refresh_btn = gr.Button("πŸ”„ Refresh Logs")
                refresh_btn.click(fn=load_logs, inputs=None, outputs=[log_area])
            with gr.TabItem("ℹ️ About Me"):
                gr.HTML("""
<div class="info-grid">
  <div class="info-card">
    <h2>πŸ‘» GhostAI: AI Media Innovator</h2>
    <p>I'm a DevOps AI engineer specializing in autonomous media pipelines. My passion is crafting cutting-edge AI tools for video, audio, and automation.</p>
    <p><b>Mission:</b> Empower creators with fast, innovative AI solutions.<br>
       <b>Projects:</b> GhostPack Video Generator, GhostAI Music Generator.<br>
       <b>Vision:</b> Redefine media creation with AI-driven precision.</p>
    <p>
      πŸ”— <a href="https://huggingface.co/ghostai1">HuggingFace Profile</a><br>
      βœ‰οΈ <a href="mailto:ghostai@example.com">Contact Me</a>
    </p>
  </div>
</div>
""")
            with gr.TabItem("πŸ“Έ Showcase"):
                gr.HTML("""
<div class="info-grid">
  <div class="info-card">
    <h2>✨ GhostPack Showcase</h2>
    <p>Experience cinematic AI video creation with GhostPack, powered by advanced neural networks for fluid motion and stunning visuals. From cyberpunk cityscapes to alien jungles, GhostPack brings your imagination to life. Inspired by the success of the GhostAI Music Generator, this tool is your gateway to next-gen media creation.</p>
    <div align="center">
      <img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/2RH49llUgKsmWY7Hu8yBD.gif"
           alt="GhostPack Animated Banner"
           style="width:920px;height:260px;max-width:100%;border-radius:18px;box-shadow:0 0 48px #00ffcc;margin-bottom:36px;">
      <p><b>GhostPack in Action:</b> Dynamic video generation with phantom-like precision.</p>
    </div>
    <div align="center">
      <img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/k8pgUlg4OvdUZpbMNTcp5.gif"
           alt="GhostPack Demo GIF"
           style="width:470px;height:auto;border-radius:18px;box-shadow:0 0 32px #ff00ff;margin-bottom:28px;">
      <p><b>Demo:</b> Create videos from a single image and prompt.</p>
    </div>
    <div style="display:flex;justify-content:center;gap:28px;">
      <div>
        <img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/7ABE2lOA4LOUtPfh1mhxP.png"
             alt="Main Interface"
             style="width:320px;height:auto;border-radius:12px;box-shadow:0 0 18px #00ffcc;">
        <p><b>Main Interface:</b> Intuitive controls for video generation.</p>
      </div>
      <div>
        <img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/9qNVRX2eM2iCY8xQKcOwW.png"
             alt="Advanced Settings"
             style="width:320px;height:auto;border-radius:12px;box-shadow:0 0 18px #00ffcc;">
        <p><b>Settings:</b> Fine-tune for optimal performance.</p>
      </div>
      <div>
        <img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/--fIS9ITg4-VqN22ySoa2.png"
             alt="Logs Display"
             style="width:320px;height:auto;border-radius:12px;box-shadow:0 0 18px #00ffcc;">
        <p><b>Logs:</b> Monitor VRAM and generation progress.</p>
      </div>
    </div>
  </div>
</div>
""")
    blk.launch(server_name=args.server, server_port=args.port, share=args.share, inbrowser=args.inbrowser)

if __name__ == "__main__":
    run_ui()