Spaces:
Running
Running
File size: 22,171 Bytes
7d79c17 6e6a051 7d79c17 04fba1b 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 6e6a051 7d79c17 04fba1b 6e6a051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
#!/usr/bin/env python3
# ---------------------------------------------------------------------------
# RELEASE β GhostPack Video Generator (πΈ Showcase Tab Polished)
# ---------------------------------------------------------------------------
import os, sys, argparse, random, traceback, json, logging
import numpy as np, torch, einops, gradio as gr
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
SiglipImageProcessor, SiglipVisionModel,
)
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake,
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
resize_and_center_crop, generate_timestamp,
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
gpu, get_cuda_free_memory_gb, DynamicSwapInstaller,
unload_complete_models, load_model_as_complete,
fake_diffusers_current_device, move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
# ---------------------------------------------------------------------------
# SETUP LOGGING & TCMALLOC DETECTION
# ---------------------------------------------------------------------------
BASE = os.path.abspath(os.path.dirname(__file__))
LOG_PATH = os.path.join(BASE, "ghostpack.log")
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] %(levelname)s - %(message)s',
handlers=[logging.FileHandler(LOG_PATH), logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
def detect_tcmalloc():
try:
with open('/proc/self/maps', 'r') as f:
return 'tcmalloc' in f.read()
except Exception:
return False
logger.info(f"TCMalloc loaded: {detect_tcmalloc()}")
# ---------------------------------------------------------------------------
# SETTINGS
# ---------------------------------------------------------------------------
SETTINGS_PATH = os.path.join(BASE, "settings.json")
default_settings = {
"latent_window": 9,
"cfg_scale": 1.0,
"cfg_rescale": 0.0,
"gpu_keep": 6.0,
"enable_teacache": True,
"mp4_crf": 16
}
try:
with open(SETTINGS_PATH, "r") as f:
loaded = json.load(f)
settings = loaded if isinstance(loaded, dict) else default_settings
except:
settings = default_settings
def save_settings(lw, cs, cr, gk, teac, crf):
s = {
"latent_window": lw,
"cfg_scale": cs,
"cfg_rescale": cr,
"gpu_keep": gk,
"enable_teacache": teac,
"mp4_crf": crf
}
with open(SETTINGS_PATH, "w") as f:
json.dump(s, f, indent=2)
return "β
Settings saved!"
def load_logs():
if os.path.exists(LOG_PATH):
with open(LOG_PATH, "r") as f:
return f.read()
return "No logs found."
# ---------------------------------------------------------------------------
# ENV / CACHE
# ---------------------------------------------------------------------------
CACHE = os.path.join(BASE, "hf_download")
os.makedirs(CACHE, exist_ok=True)
for _v in ("HF_HOME", "TRANSFORMERS_CACHE", "HF_DATASETS_CACHE"):
os.environ[_v] = CACHE
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
# ---------------------------------------------------------------------------
# CLI
# ---------------------------------------------------------------------------
ap = argparse.ArgumentParser()
ap.add_argument("--share", action="store_true")
ap.add_argument("--server", default="0.0.0.0")
ap.add_argument("--port", type=int, default=7860)
ap.add_argument("--inbrowser", action="store_true")
args = ap.parse_args()
# ---------------------------------------------------------------------------
# VRAM
# ---------------------------------------------------------------------------
free_gb = get_cuda_free_memory_gb(gpu)
hi_vram = free_gb > 60
logger.info(f"[GhostPack] Free VRAM: {free_gb:.1f} GB | High-VRAM: {hi_vram}")
# ---------------------------------------------------------------------------
# MODEL LOAD
# ---------------------------------------------------------------------------
def llm(sf):
return LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder=sf, torch_dtype=torch.float16
).cpu().eval()
def clip(sf):
return CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder=sf, torch_dtype=torch.float16
).cpu().eval()
text_enc = llm("text_encoder")
text_enc2 = clip("text_encoder_2")
tok = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer"
)
tok2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2"
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16
).cpu().eval()
feat_ext = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder="feature_extractor"
)
img_enc = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16
).cpu().eval()
trans = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16
).cpu().eval()
trans.high_quality_fp32_output_for_inference = True
if not hi_vram:
vae.enable_slicing(); vae.enable_tiling()
else:
for m in (text_enc, text_enc2, img_enc, vae, trans):
m.to(gpu)
trans.to(dtype=torch.bfloat16)
for m in (vae, img_enc, text_enc, text_enc2):
m.to(dtype=torch.float16)
for m in (vae, img_enc, text_enc, text_enc2, trans):
m.requires_grad_(False)
if not hi_vram:
DynamicSwapInstaller.install_model(trans, device=gpu)
DynamicSwapInstaller.install_model(text_enc, device=gpu)
OUT = os.path.join(BASE, "outputs")
os.makedirs(OUT, exist_ok=True)
stream = AsyncStream()
# ---------------------------------------------------------------------------
# DEMO IMAGE
# ---------------------------------------------------------------------------
demo_path = os.path.join(BASE, "img", "demo.png")
demo_np = np.array(Image.open(demo_path).convert("RGB")) \
if os.path.exists(demo_path) else None
# ---------------------------------------------------------------------------
# WORKER & WRAPPER
# ---------------------------------------------------------------------------
@torch.no_grad()
def worker(img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf):
if sd == -1:
sd = random.randint(0, 2**31 - 1)
sections = max(round((secs * 30) / (win * 4)), 1)
job = generate_timestamp()
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Start"))))
try:
if not hi_vram:
unload_complete_models(text_enc, text_enc2, img_enc, vae, trans)
fake_diffusers_current_device(text_enc, gpu)
load_model_as_complete(text_enc2, gpu)
lv, cp = encode_prompt_conds(p, text_enc, text_enc2, tok, tok2)
lv_n, cp_n= (torch.zeros_like(lv), torch.zeros_like(cp)) \
if cfg == 1 else encode_prompt_conds(n_p, text_enc, text_enc2, tok, tok2)
lv, m = crop_or_pad_yield_mask(lv, 512)
lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
H, W, _ = img.shape
h, w = find_nearest_bucket(H, W, 640)
img_np = resize_and_center_crop(img, w, h)
Image.fromarray(img_np).save(os.path.join(OUT, f"{job}.png"))
img_pt = torch.from_numpy(img_np).float() / 127.5 - 1
img_pt = img_pt.permute(2, 0, 1)[None, :, None]
if not hi_vram: load_model_as_complete(vae, gpu)
start_lat = vae_encode(img_pt, vae)
if not hi_vram: load_model_as_complete(img_enc, gpu)
img_hidden= hf_clip_vision_encode(img_np, feat_ext, img_enc).last_hidden_state
to = trans.dtype
lv, lv_n, cp, cp_n, img_hidden = [x.to(to) for x in (lv, lv_n, cp, cp_n, img_hidden)]
gen = torch.Generator("cpu").manual_seed(sd)
frames = win * 4 - 3
hist_lat = torch.zeros((1,16,19,h//8,w//8), dtype=torch.float32).cpu()
hist_px, total = None, 0
pad_seq = [3] + [2]*(sections-3) + [1,0] if sections>4 else list(reversed(range(sections)))
for pad in pad_seq:
last = (pad == 0)
if stream.input_queue.top() == "end":
stream.output_queue.push(("end", None)); return
pad_sz = pad * win
idx = torch.arange(0, sum([1,pad_sz,win,1,2,16])).unsqueeze(0)
a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
clean_idx = torch.cat([a,d],1)
pre = start_lat.to(hist_lat)
post,two,four = hist_lat[:,:,:19].split([1,2,16],2)
clean = torch.cat([pre,post],2)
if not hi_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(trans, gpu, keep)
trans.initialize_teacache(tea, stp)
def cb(d):
pv = vae_decode_fake(d["denoised"])
pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
pv = einops.rearrange(pv, "b c t h w->(b h)(t w)c")
cur = d["i"] + 1
stream.output_queue.push(("progress", (pv, f"{total*4-3}f",
make_progress_bar_html(int(100*cur/stp), f"{cur}/{stp}"))))
if stream.input_queue.top() == "end":
stream.output_queue.push(("end", None)); raise KeyboardInterrupt
new_lat = sample_hunyuan(
transformer=trans, sampler="unipc", width=w, height=h, frames=frames,
real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
num_inference_steps=stp, generator=gen,
prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
device=gpu, dtype=torch.bfloat16, image_embeddings=img_hidden,
latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
clean_latents_2x=two, clean_latent_2x_indices=e,
clean_latents_4x=four, clean_latent_4x_indices=f,
callback=cb
)
if last:
new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2)
total += new_lat.shape[2]
hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2)
if not hi_vram:
offload_model_from_device_for_memory_preservation(trans, gpu, 8)
load_model_as_complete(vae, gpu)
real = hist_lat[:,:,:total]
if hist_px is None:
hist_px = vae_decode(real, vae).cpu()
else:
sec_lat = win*2 + 1 if last else win*2
cur_px = vae_decode(real[:,:,:sec_lat], vae).cpu()
hist_px = soft_append_bcthw(cur_px, hist_px, win*4-3)
if not hi_vram:
unload_complete_models()
mp4 = os.path.join(OUT, f"{job}_{total}.mp4")
save_bcthw_as_mp4(hist_px, mp4, fps=30, crf=crf)
stream.output_queue.push(("file", mp4))
if last: break
except Exception:
traceback.print_exc()
stream.output_queue.push(("end", None))
def wrapper(*args):
yield from wrapper_logic(*args)
def wrapper_logic(img,p,n_p,sd,secs,win,stp,cfg,gsc,rsc,keep,tea,crf):
global stream
if img is None:
raise gr.Error("Upload an image.")
yield None,None,"","","",gr.update(interactive=False),gr.update(interactive=True)
stream = AsyncStream()
async_run(worker, img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf)
out, log = None, ""
while True:
flag, data = stream.output_queue.next()
if flag == "file":
out = data
yield out, gr.update(), gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True)
if flag == "progress":
pv, desc, html = data
log = desc
yield gr.update(), gr.update(visible=True, value=pv), desc, html, log, gr.update(interactive=False), gr.update(interactive=True)
if flag == "end":
yield out, gr.update(visible=False), gr.update(), "", log, gr.update(interactive=True), gr.update(interactive=False)
break
# ---------------------------------------------------------------------------
# UI
# ---------------------------------------------------------------------------
def run_ui():
css = make_progress_bar_css() + """
body,.gradio-container{background:#111821;color:#eee;font-family:Roboto,Arial,sans-serif}
.gr-button,.gr-button-primary{background:#006dff;border:#006dff;font-size:16px;padding:10px 22px}
.gr-button-primary.save{background:#28a745;border:#28a745}
.gr-button-primary.save:hover{background:#3ec06d;border:#3ec06d}
.gr-button:hover,.gr-button-primary:hover{background:#0099ff;border:#0099ff}
input,textarea,.gr-input,.gr-textbox,.gr-slider,.gr-number{background:#1e1e1e;color:#eee;border-color:#006dff}
.info-grid{display:grid;grid-template-columns:repeat(auto-fit,minmax(320px,1fr));gap:24px;margin-top:20px}
.info-card{background:#0d1b2a;padding:28px;border:2px solid #0099ff;border-radius:14px;box-shadow:0 0 18px #000a}
.info-card h2{margin:0 0 16px 0;color:#00e6ff;font-size:26px}
.info-card p{margin:0 0 18px 0;line-height:1.6}
.info-card ul,ol{margin:0;padding-left:22px}
.info-card li{margin-bottom:12px}
.info-card a{color:#37c4ff;text-decoration:none;font-weight:600}
.info-card a:hover{text-decoration:underline;color:#6fe0ff}
"""
positive_examples = [
["A neon specter gliding through a cyberpunk cityscape at dusk."],
["An astronaut exploring an alien jungle on Mars."],
["A brave knight facing a dragon in a stormy courtyard."],
["A futuristic city skyline at night with flying cars."]
]
negative_examples = [
["low quality, blurry, watermark, distorted, deformed"]
]
blk = gr.Blocks(css=css).queue()
with blk:
gr.Markdown("## π» **GhostPack β Phantom Float Math Edition**")
with gr.Tabs():
with gr.TabItem("ποΈ Generator"):
with gr.Row():
with gr.Column(scale=6):
img = gr.Image(sources=["upload"], type="numpy", label="Input Image", height=360, value=demo_np)
prm = gr.Textbox(label="Prompt", placeholder="Enter positive prompt")
ds_pos = gr.Dataset(samples=positive_examples, label="π¨ Quick Prompts", components=[prm])
ds_pos.click(lambda x: x[0], inputs=[ds_pos], outputs=[prm])
npr = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt")
ds_neg = gr.Dataset(samples=negative_examples, label="π« Neg Prompts", components=[npr])
ds_neg.click(lambda x: x[0], inputs=[ds_neg], outputs=[npr])
se = gr.Number(label="Seed", value=-1, precision=0, minimum=-1)
sec = gr.Slider(label="Length (s)", minimum=1, maximum=120, value=5, step=0.1)
win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=settings["latent_window"], step=1)
stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1, maximum=32, value=settings["cfg_scale"], step=0.01)
gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=settings["cfg_scale"], step=0.01)
rsc = gr.Slider(label="Guidance Rescale", minimum=0, maximum=1, value=settings["cfg_rescale"], step=0.01)
keep = gr.Slider(label="GPU Keep (GB)", minimum=6, maximum=128, value=settings["gpu_keep"], step=0.1)
tea = gr.Checkbox(label="Use TeaCache", value=settings["enable_teacache"])
crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=settings["mp4_crf"], step=1)
b_go, b_end = gr.Button("Start π"), gr.Button("End", interactive=False)
with gr.Column(scale=5):
vid = gr.Video(label="Output Video", autoplay=True, height=540, loop=True)
log = gr.Markdown()
inputs = [img, prm, npr, se, sec, win, stp, cfg, gsc, rsc, keep, tea, crf]
b_go.click(fn=wrapper, inputs=inputs, outputs=[vid, gr.Image(visible=False), gr.Markdown(), gr.HTML(), log, b_go, b_end])
b_end.click(fn=lambda: stream.input_queue.push("end"))
with gr.TabItem("βοΈ Settings"):
gr.Markdown("### βοΈ Advanced Settings & Save")
lw = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=settings["latent_window"], step=1)
cs = gr.Slider(label="CFG Scale", minimum=1, maximum=32, value=settings["cfg_scale"], step=0.01)
cr = gr.Slider(label="CFG Rescale", minimum=0, maximum=1, value=settings["cfg_rescale"], step=0.01)
gk = gr.Slider(label="GPU Keep (GB)", minimum=6, maximum=128, value=settings["gpu_keep"], step=0.1)
te_s = gr.Checkbox(label="Enable TeaCache", value=settings["enable_teacache"])
crf_s= gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=settings["mp4_crf"], step=1)
save_btn = gr.Button("Save Settings β
", elem_classes="save")
save_status = gr.Markdown("")
save_btn.click(fn=save_settings, inputs=[lw, cs, cr, gk, te_s, crf_s], outputs=[save_status])
with gr.TabItem("π Logs"):
gr.Markdown("### π GhostPack Logs")
log_area = gr.Textbox(label="Logs", lines=20, interactive=False, value=load_logs())
refresh_btn = gr.Button("π Refresh Logs")
refresh_btn.click(fn=load_logs, inputs=None, outputs=[log_area])
with gr.TabItem("βΉοΈ About Me"):
gr.HTML("""
<div class="info-grid">
<div class="info-card">
<h2>π» GhostAI: AI Media Innovator</h2>
<p>I'm a DevOps AI engineer specializing in autonomous media pipelines. My passion is crafting cutting-edge AI tools for video, audio, and automation.</p>
<p><b>Mission:</b> Empower creators with fast, innovative AI solutions.<br>
<b>Projects:</b> GhostPack Video Generator, GhostAI Music Generator.<br>
<b>Vision:</b> Redefine media creation with AI-driven precision.</p>
<p>
π <a href="https://huggingface.co/ghostai1">HuggingFace Profile</a><br>
βοΈ <a href="mailto:ghostai@example.com">Contact Me</a>
</p>
</div>
</div>
""")
with gr.TabItem("πΈ Showcase"):
gr.HTML("""
<div class="info-grid">
<div class="info-card">
<h2>β¨ GhostPack Showcase</h2>
<p>Experience cinematic AI video creation with GhostPack, powered by advanced neural networks for fluid motion and stunning visuals. From cyberpunk cityscapes to alien jungles, GhostPack brings your imagination to life. Inspired by the success of the GhostAI Music Generator, this tool is your gateway to next-gen media creation.</p>
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/2RH49llUgKsmWY7Hu8yBD.gif"
alt="GhostPack Animated Banner"
style="width:920px;height:260px;max-width:100%;border-radius:18px;box-shadow:0 0 48px #00ffcc;margin-bottom:36px;">
<p><b>GhostPack in Action:</b> Dynamic video generation with phantom-like precision.</p>
</div>
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/k8pgUlg4OvdUZpbMNTcp5.gif"
alt="GhostPack Demo GIF"
style="width:470px;height:auto;border-radius:18px;box-shadow:0 0 32px #ff00ff;margin-bottom:28px;">
<p><b>Demo:</b> Create videos from a single image and prompt.</p>
</div>
<div style="display:flex;justify-content:center;gap:28px;">
<div>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/7ABE2lOA4LOUtPfh1mhxP.png"
alt="Main Interface"
style="width:320px;height:auto;border-radius:12px;box-shadow:0 0 18px #00ffcc;">
<p><b>Main Interface:</b> Intuitive controls for video generation.</p>
</div>
<div>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/9qNVRX2eM2iCY8xQKcOwW.png"
alt="Advanced Settings"
style="width:320px;height:auto;border-radius:12px;box-shadow:0 0 18px #00ffcc;">
<p><b>Settings:</b> Fine-tune for optimal performance.</p>
</div>
<div>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6421b1c68adc8881b974a89d/--fIS9ITg4-VqN22ySoa2.png"
alt="Logs Display"
style="width:320px;height:auto;border-radius:12px;box-shadow:0 0 18px #00ffcc;">
<p><b>Logs:</b> Monitor VRAM and generation progress.</p>
</div>
</div>
</div>
</div>
""")
blk.launch(server_name=args.server, server_port=args.port, share=args.share, inbrowser=args.inbrowser)
if __name__ == "__main__":
run_ui() |