#!/usr/bin/env python3 """ OpenAI GPT-4o Resume Extractor This module provides resume extraction using OpenAI's GPT-4o model (GPT-4.1), which is the latest and most capable model for complex resume parsing. """ import json import re import logging import os from typing import Dict, Any, List, Optional from openai import OpenAI # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class OpenAIResumeExtractor: """ Production-ready resume extractor using OpenAI GPT-4o (GPT-4.1) """ def __init__(self, api_key: Optional[str] = None, model: str = "gpt-4o"): """ Initialize the OpenAI extractor Args: api_key: OpenAI API key (optional, will use env var if not provided) model: OpenAI model to use (gpt-4o is the latest and most capable GPT-4 model) """ self.api_key = api_key or os.getenv('OPENAI_API_KEY') self.model = model if not self.api_key: raise ValueError("No OpenAI API key found. Set OPENAI_API_KEY environment variable.") self.client = OpenAI(api_key=self.api_key) def extract_sections_openai(self, text: str) -> Dict[str, Any]: """ Extract resume sections using OpenAI GPT-4o Args: text: Raw resume text Returns: Structured resume data """ logger.info("Starting OpenAI GPT-4o extraction...") try: # Create a comprehensive prompt for structured extraction prompt = self._create_extraction_prompt(text) # Make API call to OpenAI response = self.client.chat.completions.create( model=self.model, messages=[ { "role": "system", "content": "You are an expert resume parser. Extract information accurately and return valid JSON only." }, { "role": "user", "content": prompt } ], temperature=0.1, # Low temperature for consistent results max_tokens=2000 ) # Parse the response result_text = response.choices[0].message.content.strip() # Clean up the response to extract JSON if "```json" in result_text: result_text = result_text.split("```json")[1].split("```")[0] elif "```" in result_text: result_text = result_text.split("```")[1] # Parse JSON result = json.loads(result_text) # Validate and clean the result result = self._validate_and_clean_result(result) # Extract contact info from the original text contact_info = self._extract_contact_info(text) result["ContactInfo"] = contact_info logger.info("✅ OpenAI extraction completed successfully") return result except Exception as e: logger.error(f"OpenAI extraction failed: {e}") # Check if it's an API key issue if "401" in str(e) or "invalid_api_key" in str(e): logger.error("❌ Invalid OpenAI API key - please check your OPENAI_API_KEY environment variable") # Return empty result to force hybrid system to try other methods return self._get_empty_result() # For other errors, fallback to regex extraction return self._fallback_extraction(text) def _create_extraction_prompt(self, text: str) -> str: """Create a comprehensive prompt for resume extraction""" prompt = f""" Extract the following information from this resume text and return it as valid JSON: RESUME TEXT: {text} Extract and return ONLY a JSON object with this exact structure: {{ "Name": "Full name of the person", "Summary": "Professional summary or objective (full text)", "Skills": ["skill1", "skill2", "skill3"], "StructuredExperiences": [ {{ "title": "Job title", "company": "Company name", "date_range": "Date range (e.g., Jan 2021 - Present)", "responsibilities": ["responsibility 1", "responsibility 2"] }} ], "Education": ["degree | institution | year"], "Training": [] }} EXTRACTION RULES: 1. Name: Extract the full name from the top of the resume 2. Summary: Extract the complete professional summary/objective section 3. Skills: Extract technical skills only (programming languages, tools, frameworks) 4. StructuredExperiences: For each job, extract: - title: The job title/position - company: Company name (include location if provided) - date_range: Employment dates - responsibilities: List of bullet points describing what they did 5. Education: Extract degrees, institutions, and graduation years 6. Training: Extract certifications, courses, training programs IMPORTANT: - Return ONLY valid JSON, no explanations - If a section is not found, use empty string or empty array - For skills, exclude company names and focus on technical skills - For experiences, look for patterns like "Title | Company | Dates" or similar - Extract ALL job experiences found in the resume - Include ALL bullet points under each job as responsibilities """ return prompt def _validate_and_clean_result(self, result: Dict[str, Any]) -> Dict[str, Any]: """Validate and clean the extraction result""" # Ensure all required keys exist required_keys = ["Name", "Summary", "Skills", "StructuredExperiences", "Education", "Training"] for key in required_keys: if key not in result: result[key] = [] if key in ["Skills", "StructuredExperiences", "Education", "Training"] else "" # Clean skills - remove company names and duplicates if result.get("Skills"): cleaned_skills = [] for skill in result["Skills"]: skill = skill.strip() # Skip if it looks like a company name or is too short if len(skill) > 1 and not self._is_company_name(skill): cleaned_skills.append(skill) result["Skills"] = list(set(cleaned_skills)) # Remove duplicates # Validate experience structure if result.get("StructuredExperiences"): cleaned_experiences = [] for exp in result["StructuredExperiences"]: if isinstance(exp, dict) and exp.get("title") and exp.get("company"): # Ensure responsibilities is a list if not isinstance(exp.get("responsibilities"), list): exp["responsibilities"] = [] cleaned_experiences.append(exp) result["StructuredExperiences"] = cleaned_experiences return result def _get_empty_result(self) -> Dict[str, Any]: """Return empty result structure for API failures""" return { "Name": "", "Summary": "", "Skills": [], "StructuredExperiences": [], "Education": [], "Training": [], "ContactInfo": {} } def _is_company_name(self, text: str) -> bool: """Check if text looks like a company name rather than a skill""" company_indicators = [ "inc", "llc", "corp", "ltd", "company", "solutions", "services", "systems", "technologies", "financial", "insurance", "abc", "xyz" ] text_lower = text.lower() return any(indicator in text_lower for indicator in company_indicators) def _fallback_extraction(self, text: str) -> Dict[str, Any]: """Fallback to regex-based extraction if OpenAI fails""" logger.info("Using regex fallback extraction...") try: from utils.hf_extractor_simple import extract_sections_hf_simple return extract_sections_hf_simple(text) except ImportError: # Basic regex fallback return { "Name": self._extract_name_regex(text), "Summary": self._extract_summary_regex(text), "Skills": self._extract_skills_regex(text), "StructuredExperiences": self._extract_experiences_regex(text), "Education": self._extract_education_regex(text), "Training": [], "ContactInfo": self._extract_contact_info(text) } def _extract_name_regex(self, text: str) -> str: """Regex fallback for name extraction""" lines = text.split('\n')[:5] for line in lines: line = line.strip() if re.search(r'@|phone|email|linkedin|github', line.lower()): continue name_match = re.match(r'^([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)', line) if name_match: return name_match.group(1) return "" def _extract_summary_regex(self, text: str) -> str: """Regex fallback for summary extraction""" summary_pattern = r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))' match = re.search(summary_pattern, text, re.DOTALL) if match: summary = match.group(1).strip() summary = re.sub(r'\n+', ' ', summary) summary = re.sub(r'\s+', ' ', summary) return summary return "" def _extract_skills_regex(self, text: str) -> List[str]: """Regex fallback for skills extraction""" skills = set() # Look for technical skills section skills_pattern = r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:experience|education|projects?))' match = re.search(skills_pattern, text, re.DOTALL) if match: skills_text = match.group(1) # Split by common separators skill_items = re.split(r'[,;]\s*', skills_text.replace('\n', ' ')) for item in skill_items: item = item.strip() if item and len(item) > 1 and len(item) < 30: skills.add(item) return sorted(list(skills)) def _extract_experiences_regex(self, text: str) -> List[Dict[str, Any]]: """Regex fallback for experience extraction""" experiences = [] # Look for work experience section exp_pattern = r'(?i)(?:work\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|$))' match = re.search(exp_pattern, text, re.DOTALL) if match: exp_text = match.group(1) # Look for job entries with | separators job_pattern = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)' matches = re.findall(job_pattern, exp_text) for match in matches: title, company, dates = match responsibilities = [] # Look for bullet points after this job job_section = exp_text[exp_text.find(f"{title}|{company}|{dates}"):] bullets = re.findall(r'[-•]\s*([^-•\n]+)', job_section) responsibilities = [bullet.strip() for bullet in bullets if len(bullet.strip()) > 10] experience = { "title": title.strip(), "company": company.strip(), "date_range": dates.strip(), "responsibilities": responsibilities } experiences.append(experience) return experiences def _extract_education_regex(self, text: str) -> List[str]: """Regex fallback for education extraction""" education = [] edu_pattern = r'(?i)education[:\s]*\n(.*?)(?=\n\s*(?:certifications?|projects?|$))' match = re.search(edu_pattern, text, re.DOTALL) if match: edu_text = match.group(1) edu_lines = [line.strip() for line in edu_text.split('\n') if line.strip()] for line in edu_lines: if len(line) > 10: # Filter out short lines education.append(line) return education def _extract_contact_info(self, text: str) -> Dict[str, str]: """Extract contact information (email, phone, LinkedIn)""" contact_info = {} # Extract email email_match = re.search(r'[\w\.-]+@[\w\.-]+\.\w+', text) if email_match: contact_info["email"] = email_match.group(0) # Extract phone phone_patterns = [ r'\+?1?[-.\s]?\(?(\d{3})\)?[-.\s]?(\d{3})[-.\s]?(\d{4})', r'(\d{3})[-.\s](\d{3})[-.\s](\d{4})', r'\+\d{1,3}[-.\s]?\d{3}[-.\s]?\d{3}[-.\s]?\d{4}' ] for pattern in phone_patterns: phone_match = re.search(pattern, text) if phone_match: contact_info["phone"] = phone_match.group(0) break # Extract LinkedIn linkedin_patterns = [ r'linkedin\.com/in/[\w-]+', r'linkedin\.com/[\w-]+', r'(?i)linkedin[:\s]+[\w.-]+', ] for pattern in linkedin_patterns: linkedin_match = re.search(pattern, text) if linkedin_match: linkedin_url = linkedin_match.group(0) if not linkedin_url.startswith('http'): linkedin_url = f"https://{linkedin_url}" contact_info["linkedin"] = linkedin_url break return contact_info # Convenience function for easy usage def extract_sections_openai(text: str, api_key: Optional[str] = None) -> Dict[str, Any]: """ Extract resume sections using OpenAI GPT-4o (GPT-4.1) Args: text: Raw resume text api_key: OpenAI API key (optional) Returns: Structured resume data """ extractor = OpenAIResumeExtractor(api_key=api_key) return extractor.extract_sections_openai(text) # Test function def test_openai_extraction(): """Test the OpenAI extraction with sample resume""" sample_text = """ John Doe Selenium Java Automation Engineer Email: johndoe@example.com | Phone: +1-123-456-7890 Professional Summary Results-driven Automation Test Engineer with 8 years of experience in Selenium and Java, specializing in automation frameworks for financial and insurance domains. Technical Skills Selenium WebDriver, Java, TestNG, Cucumber, Jenkins, Maven, Git, REST Assured, Postman, JIRA, Agile/Scrum, CI/CD Work Experience Senior Automation Test Engineer | ABC Financial Services | Jan 2021 - Present - Led automation framework enhancements using Selenium and Java, improving test efficiency. - Automated end-to-end UI and API testing for financial applications, reducing manual effort by 40%. Automation Test Engineer | XYZ Insurance Solutions | Jun 2017 - Dec 2020 - Designed and implemented Selenium automation framework using Java and TestNG. - Developed automated test scripts for insurance policy management applications. Education Bachelor of Technology in Computer Science | ABC University | 2015 """ extractor = OpenAIResumeExtractor() result = extractor.extract_sections_openai(sample_text) print("OpenAI Extraction Results:") print(json.dumps(result, indent=2)) return result if __name__ == "__main__": test_openai_extraction()