import streamlit as st import requests import redis import psycopg2 # Redis Connection redis_client = redis.Redis(host='redis-19703.c289.us-west-1-2.ec2.redns.redis-cloud.com', port=19703, db=0, decode_responses=True) # PostgreSQL Connection conn = psycopg2.connect(database="screening_db", user="user", password="password", host="localhost", port="5432") cursor = conn.cursor() HF_API_URL = "https://api-inference.huggingface.co/models/your-hf-model-id" st.title("AI Candidate Screening") resume_text = st.text_area("Paste Candidate Resume") if st.button("Analyze Resume"): cache_key = f"resume:{resume_text[:20]}" # Hash first 20 chars cached_response = redis_client.get(cache_key) if cached_response: st.write("Cached Response:", cached_response) else: response = requests.post(HF_API_URL, json={"inputs": resume_text}).json() redis_client.set(cache_key, response, ex=3600) # Cache for 1 hour # Store result in PostgreSQL cursor.execute("INSERT INTO screenings (resume_text, result) VALUES (%s, %s)", (resume_text, response)) conn.commit() st.write("AI Response:", response)