TalentLensAI / utils /openai_extractor.py
Johnny
feat: Complete Format_Resume.py system with OpenAI GPT-4o integration and template preservation - Added Format_Resume.py Streamlit page with OpenAI GPT-4o primary extraction, HF Cloud backup, 5-tier fallback system, template preservation with Qvell branding, contact info extraction, skills cleaning, career timeline generation, and comprehensive utils restructure (10/11 files required). Renamed app.py to TalentLens.py, added blank_resume.docx template, updated .gitignore for Salesforce exclusion.
c2f9ec8
raw
history blame
16.1 kB
#!/usr/bin/env python3
"""
OpenAI GPT-4o Resume Extractor
This module provides resume extraction using OpenAI's GPT-4o model (GPT-4.1),
which is the latest and most capable model for complex resume parsing.
"""
import json
import re
import logging
import os
from typing import Dict, Any, List, Optional
from openai import OpenAI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class OpenAIResumeExtractor:
"""
Production-ready resume extractor using OpenAI GPT-4o (GPT-4.1)
"""
def __init__(self, api_key: Optional[str] = None, model: str = "gpt-4o"):
"""
Initialize the OpenAI extractor
Args:
api_key: OpenAI API key (optional, will use env var if not provided)
model: OpenAI model to use (gpt-4o is the latest and most capable GPT-4 model)
"""
self.api_key = api_key or os.getenv('OPENAI_API_KEY')
self.model = model
if not self.api_key:
raise ValueError("No OpenAI API key found. Set OPENAI_API_KEY environment variable.")
self.client = OpenAI(api_key=self.api_key)
def extract_sections_openai(self, text: str) -> Dict[str, Any]:
"""
Extract resume sections using OpenAI GPT-4o
Args:
text: Raw resume text
Returns:
Structured resume data
"""
logger.info("Starting OpenAI GPT-4o extraction...")
try:
# Create a comprehensive prompt for structured extraction
prompt = self._create_extraction_prompt(text)
# Make API call to OpenAI
response = self.client.chat.completions.create(
model=self.model,
messages=[
{
"role": "system",
"content": "You are an expert resume parser. Extract information accurately and return valid JSON only."
},
{
"role": "user",
"content": prompt
}
],
temperature=0.1, # Low temperature for consistent results
max_tokens=2000
)
# Parse the response
result_text = response.choices[0].message.content.strip()
# Clean up the response to extract JSON
if "```json" in result_text:
result_text = result_text.split("```json")[1].split("```")[0]
elif "```" in result_text:
result_text = result_text.split("```")[1]
# Parse JSON
result = json.loads(result_text)
# Validate and clean the result
result = self._validate_and_clean_result(result)
# Extract contact info from the original text
contact_info = self._extract_contact_info(text)
result["ContactInfo"] = contact_info
logger.info("✅ OpenAI extraction completed successfully")
return result
except Exception as e:
logger.error(f"OpenAI extraction failed: {e}")
# Check if it's an API key issue
if "401" in str(e) or "invalid_api_key" in str(e):
logger.error("❌ Invalid OpenAI API key - please check your OPENAI_API_KEY environment variable")
# Return empty result to force hybrid system to try other methods
return self._get_empty_result()
# For other errors, fallback to regex extraction
return self._fallback_extraction(text)
def _create_extraction_prompt(self, text: str) -> str:
"""Create a comprehensive prompt for resume extraction"""
prompt = f"""
Extract the following information from this resume text and return it as valid JSON:
RESUME TEXT:
{text}
Extract and return ONLY a JSON object with this exact structure:
{{
"Name": "Full name of the person",
"Summary": "Professional summary or objective (full text)",
"Skills": ["skill1", "skill2", "skill3"],
"StructuredExperiences": [
{{
"title": "Job title",
"company": "Company name",
"date_range": "Date range (e.g., Jan 2021 - Present)",
"responsibilities": ["responsibility 1", "responsibility 2"]
}}
],
"Education": ["degree | institution | year"],
"Training": []
}}
EXTRACTION RULES:
1. Name: Extract the full name from the top of the resume
2. Summary: Extract the complete professional summary/objective section
3. Skills: Extract technical skills only (programming languages, tools, frameworks)
4. StructuredExperiences: For each job, extract:
- title: The job title/position
- company: Company name (include location if provided)
- date_range: Employment dates
- responsibilities: List of bullet points describing what they did
5. Education: Extract degrees, institutions, and graduation years
6. Training: Extract certifications, courses, training programs
IMPORTANT:
- Return ONLY valid JSON, no explanations
- If a section is not found, use empty string or empty array
- For skills, exclude company names and focus on technical skills
- For experiences, look for patterns like "Title | Company | Dates" or similar
- Extract ALL job experiences found in the resume
- Include ALL bullet points under each job as responsibilities
"""
return prompt
def _validate_and_clean_result(self, result: Dict[str, Any]) -> Dict[str, Any]:
"""Validate and clean the extraction result"""
# Ensure all required keys exist
required_keys = ["Name", "Summary", "Skills", "StructuredExperiences", "Education", "Training"]
for key in required_keys:
if key not in result:
result[key] = [] if key in ["Skills", "StructuredExperiences", "Education", "Training"] else ""
# Clean skills - remove company names and duplicates
if result.get("Skills"):
cleaned_skills = []
for skill in result["Skills"]:
skill = skill.strip()
# Skip if it looks like a company name or is too short
if len(skill) > 1 and not self._is_company_name(skill):
cleaned_skills.append(skill)
result["Skills"] = list(set(cleaned_skills)) # Remove duplicates
# Validate experience structure
if result.get("StructuredExperiences"):
cleaned_experiences = []
for exp in result["StructuredExperiences"]:
if isinstance(exp, dict) and exp.get("title") and exp.get("company"):
# Ensure responsibilities is a list
if not isinstance(exp.get("responsibilities"), list):
exp["responsibilities"] = []
cleaned_experiences.append(exp)
result["StructuredExperiences"] = cleaned_experiences
return result
def _get_empty_result(self) -> Dict[str, Any]:
"""Return empty result structure for API failures"""
return {
"Name": "",
"Summary": "",
"Skills": [],
"StructuredExperiences": [],
"Education": [],
"Training": [],
"ContactInfo": {}
}
def _is_company_name(self, text: str) -> bool:
"""Check if text looks like a company name rather than a skill"""
company_indicators = [
"inc", "llc", "corp", "ltd", "company", "solutions", "services",
"systems", "technologies", "financial", "insurance", "abc", "xyz"
]
text_lower = text.lower()
return any(indicator in text_lower for indicator in company_indicators)
def _fallback_extraction(self, text: str) -> Dict[str, Any]:
"""Fallback to regex-based extraction if OpenAI fails"""
logger.info("Using regex fallback extraction...")
try:
from utils.hf_extractor_simple import extract_sections_hf_simple
return extract_sections_hf_simple(text)
except ImportError:
# Basic regex fallback
return {
"Name": self._extract_name_regex(text),
"Summary": self._extract_summary_regex(text),
"Skills": self._extract_skills_regex(text),
"StructuredExperiences": self._extract_experiences_regex(text),
"Education": self._extract_education_regex(text),
"Training": [],
"ContactInfo": self._extract_contact_info(text)
}
def _extract_name_regex(self, text: str) -> str:
"""Regex fallback for name extraction"""
lines = text.split('\n')[:5]
for line in lines:
line = line.strip()
if re.search(r'@|phone|email|linkedin|github', line.lower()):
continue
name_match = re.match(r'^([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)', line)
if name_match:
return name_match.group(1)
return ""
def _extract_summary_regex(self, text: str) -> str:
"""Regex fallback for summary extraction"""
summary_pattern = r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))'
match = re.search(summary_pattern, text, re.DOTALL)
if match:
summary = match.group(1).strip()
summary = re.sub(r'\n+', ' ', summary)
summary = re.sub(r'\s+', ' ', summary)
return summary
return ""
def _extract_skills_regex(self, text: str) -> List[str]:
"""Regex fallback for skills extraction"""
skills = set()
# Look for technical skills section
skills_pattern = r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:experience|education|projects?))'
match = re.search(skills_pattern, text, re.DOTALL)
if match:
skills_text = match.group(1)
# Split by common separators
skill_items = re.split(r'[,;]\s*', skills_text.replace('\n', ' '))
for item in skill_items:
item = item.strip()
if item and len(item) > 1 and len(item) < 30:
skills.add(item)
return sorted(list(skills))
def _extract_experiences_regex(self, text: str) -> List[Dict[str, Any]]:
"""Regex fallback for experience extraction"""
experiences = []
# Look for work experience section
exp_pattern = r'(?i)(?:work\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|$))'
match = re.search(exp_pattern, text, re.DOTALL)
if match:
exp_text = match.group(1)
# Look for job entries with | separators
job_pattern = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches = re.findall(job_pattern, exp_text)
for match in matches:
title, company, dates = match
responsibilities = []
# Look for bullet points after this job
job_section = exp_text[exp_text.find(f"{title}|{company}|{dates}"):]
bullets = re.findall(r'[-•]\s*([^-•\n]+)', job_section)
responsibilities = [bullet.strip() for bullet in bullets if len(bullet.strip()) > 10]
experience = {
"title": title.strip(),
"company": company.strip(),
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
return experiences
def _extract_education_regex(self, text: str) -> List[str]:
"""Regex fallback for education extraction"""
education = []
edu_pattern = r'(?i)education[:\s]*\n(.*?)(?=\n\s*(?:certifications?|projects?|$))'
match = re.search(edu_pattern, text, re.DOTALL)
if match:
edu_text = match.group(1)
edu_lines = [line.strip() for line in edu_text.split('\n') if line.strip()]
for line in edu_lines:
if len(line) > 10: # Filter out short lines
education.append(line)
return education
def _extract_contact_info(self, text: str) -> Dict[str, str]:
"""Extract contact information (email, phone, LinkedIn)"""
contact_info = {}
# Extract email
email_match = re.search(r'[\w\.-]+@[\w\.-]+\.\w+', text)
if email_match:
contact_info["email"] = email_match.group(0)
# Extract phone
phone_patterns = [
r'\+?1?[-.\s]?\(?(\d{3})\)?[-.\s]?(\d{3})[-.\s]?(\d{4})',
r'(\d{3})[-.\s](\d{3})[-.\s](\d{4})',
r'\+\d{1,3}[-.\s]?\d{3}[-.\s]?\d{3}[-.\s]?\d{4}'
]
for pattern in phone_patterns:
phone_match = re.search(pattern, text)
if phone_match:
contact_info["phone"] = phone_match.group(0)
break
# Extract LinkedIn
linkedin_patterns = [
r'linkedin\.com/in/[\w-]+',
r'linkedin\.com/[\w-]+',
r'(?i)linkedin[:\s]+[\w.-]+',
]
for pattern in linkedin_patterns:
linkedin_match = re.search(pattern, text)
if linkedin_match:
linkedin_url = linkedin_match.group(0)
if not linkedin_url.startswith('http'):
linkedin_url = f"https://{linkedin_url}"
contact_info["linkedin"] = linkedin_url
break
return contact_info
# Convenience function for easy usage
def extract_sections_openai(text: str, api_key: Optional[str] = None) -> Dict[str, Any]:
"""
Extract resume sections using OpenAI GPT-4o (GPT-4.1)
Args:
text: Raw resume text
api_key: OpenAI API key (optional)
Returns:
Structured resume data
"""
extractor = OpenAIResumeExtractor(api_key=api_key)
return extractor.extract_sections_openai(text)
# Test function
def test_openai_extraction():
"""Test the OpenAI extraction with sample resume"""
sample_text = """
John Doe
Selenium Java Automation Engineer
Email: johndoe@example.com | Phone: +1-123-456-7890
Professional Summary
Results-driven Automation Test Engineer with 8 years of experience in Selenium and Java,
specializing in automation frameworks for financial and insurance domains.
Technical Skills
Selenium WebDriver, Java, TestNG, Cucumber, Jenkins, Maven, Git, REST Assured, Postman,
JIRA, Agile/Scrum, CI/CD
Work Experience
Senior Automation Test Engineer | ABC Financial Services | Jan 2021 - Present
- Led automation framework enhancements using Selenium and Java, improving test efficiency.
- Automated end-to-end UI and API testing for financial applications, reducing manual effort by 40%.
Automation Test Engineer | XYZ Insurance Solutions | Jun 2017 - Dec 2020
- Designed and implemented Selenium automation framework using Java and TestNG.
- Developed automated test scripts for insurance policy management applications.
Education
Bachelor of Technology in Computer Science | ABC University | 2015
"""
extractor = OpenAIResumeExtractor()
result = extractor.extract_sections_openai(sample_text)
print("OpenAI Extraction Results:")
print(json.dumps(result, indent=2))
return result
if __name__ == "__main__":
test_openai_extraction()