Spaces:
Running
Running
File size: 12,514 Bytes
c2f9ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
#!/usr/bin/env python3
"""
Simplified Hugging Face Resume Extractor
This module provides resume extraction using primarily regex patterns
with minimal Hugging Face model usage for specific tasks only.
This approach is more reliable and faster than full model-based extraction.
"""
import json
import re
import logging
from typing import Dict, Any, List, Optional
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SimpleHFResumeExtractor:
"""
Simplified resume extractor using primarily regex with minimal HF model usage
"""
def __init__(self):
"""Initialize the simple extractor"""
self.model_available = False
# Try to load a lightweight model for name extraction only
try:
# Only load if really needed and use the smallest possible model
logger.info("Simple HF extractor initialized (regex-based)")
self.model_available = False # Disable model usage for now
except Exception as e:
logger.info(f"No HF model loaded, using pure regex approach: {e}")
self.model_available = False
def extract_sections_hf_simple(self, text: str) -> Dict[str, Any]:
"""
Extract resume sections using simplified approach
Args:
text: Raw resume text
Returns:
Structured resume data
"""
logger.info("Starting simplified HF extraction...")
try:
# Extract different sections using optimized regex patterns
name = self._extract_name_simple(text)
summary = self._extract_summary_simple(text)
skills = self._extract_skills_simple(text)
experiences = self._extract_experiences_simple(text)
education = self._extract_education_simple(text)
result = {
"Name": name,
"Summary": summary,
"Skills": skills,
"StructuredExperiences": experiences,
"Education": education,
"Training": []
}
logger.info("β
Simplified HF extraction completed")
return result
except Exception as e:
logger.error(f"Simplified HF extraction failed: {e}")
# Fallback to regex-based extraction
from utils.extractor_fixed import extract_sections_spacy_fixed
return extract_sections_spacy_fixed(text)
def _extract_name_simple(self, text: str) -> str:
"""Extract name using optimized regex patterns"""
lines = text.split('\n')[:5] # Check first 5 lines
for line in lines:
line = line.strip()
# Skip lines with contact info
if re.search(r'@|phone|email|linkedin|github|π§|π|π', line.lower()):
continue
# Skip lines with too many special characters
if len(re.findall(r'[^\w\s]', line)) > 3:
continue
# Look for name-like patterns
name_match = re.match(r'^([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)', line)
if name_match:
return name_match.group(1)
return ""
def _extract_summary_simple(self, text: str) -> str:
"""Extract professional summary using improved regex"""
# Look for summary section with better boundary detection
summary_patterns = [
r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))',
r'(?i)objective[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))',
r'(?i)profile[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))'
]
for pattern in summary_patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
summary = match.group(1).strip()
# Clean up the summary
summary = re.sub(r'\n+', ' ', summary)
summary = re.sub(r'\s+', ' ', summary)
if len(summary) > 50: # Ensure it's substantial
return summary
return ""
def _extract_skills_simple(self, text: str) -> List[str]:
"""Extract skills using enhanced regex patterns"""
skills = set()
# Look for technical skills section with better parsing
skills_pattern = r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:professional\s+experience|experience|education|projects?))'
match = re.search(skills_pattern, text, re.DOTALL)
if match:
skills_text = match.group(1)
# Parse bullet-pointed skills with improved cleaning
bullet_lines = re.findall(r'β\s*([^β\n]+)', skills_text)
for line in bullet_lines:
if ':' in line:
# Format: "Category: skill1, skill2, skill3"
skills_part = line.split(':', 1)[1].strip()
individual_skills = re.split(r',\s*', skills_part)
for skill in individual_skills:
skill = skill.strip()
# Clean up parenthetical information
skill = re.sub(r'\([^)]*\)', '', skill).strip()
if skill and len(skill) > 1 and len(skill) < 50: # Reasonable length
skills.add(skill)
# Enhanced common technical skills detection
common_skills = [
'Python', 'Java', 'JavaScript', 'TypeScript', 'C++', 'C#', 'SQL', 'NoSQL',
'React', 'Angular', 'Vue', 'Node.js', 'Django', 'Flask', 'Spring',
'AWS', 'Azure', 'GCP', 'Docker', 'Kubernetes', 'Jenkins',
'Git', 'GitHub', 'GitLab', 'Jira', 'Confluence',
'TensorFlow', 'PyTorch', 'Scikit-learn', 'Pandas', 'NumPy', 'Matplotlib', 'Seaborn',
'MySQL', 'PostgreSQL', 'MongoDB', 'Redis',
'Linux', 'Windows', 'MacOS', 'Ubuntu',
'Selenium', 'Pytest', 'TestNG', 'Postman',
'AWS Glue', 'AWS SageMaker', 'REST APIs', 'Apex', 'Bash'
]
for skill in common_skills:
if re.search(rf'\b{re.escape(skill)}\b', text, re.IGNORECASE):
skills.add(skill)
return sorted(list(skills))
def _extract_experiences_simple(self, text: str) -> List[Dict[str, Any]]:
"""Extract work experiences using improved regex patterns"""
experiences = []
# Look for experience section
exp_pattern = r'(?i)(?:professional\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|$))'
match = re.search(exp_pattern, text, re.DOTALL)
if not match:
return experiences
exp_text = match.group(1)
# Parse job entries with improved patterns
# Pattern 1: Company | Location | Title | Date
pattern1 = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches1 = re.findall(pattern1, exp_text)
processed_companies = set() # Track to avoid duplicates
for match in matches1:
company, location, title, dates = match
company_key = f"{company.strip()}, {location.strip()}"
# Skip if we've already processed this company
if company_key in processed_companies:
continue
processed_companies.add(company_key)
# Extract responsibilities for this specific job
responsibilities = self._extract_responsibilities_simple(exp_text, company.strip(), title.strip())
experience = {
"title": title.strip(),
"company": company_key,
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
return experiences
def _extract_responsibilities_simple(self, exp_text: str, company: str, title: str) -> List[str]:
"""Extract responsibilities for a specific job using improved regex"""
responsibilities = []
# Create a pattern to find the job entry and extract bullet points after it
# Look for the company and title, then capture bullet points until next job or section
job_pattern = rf'{re.escape(company)}.*?{re.escape(title)}.*?\n(.*?)(?=\n[A-Z][^|\n]*\s*\||$)'
match = re.search(job_pattern, exp_text, re.DOTALL | re.IGNORECASE)
if match:
resp_text = match.group(1)
# Extract bullet points with improved cleaning
bullets = re.findall(r'β\s*([^β\n]+)', resp_text)
for bullet in bullets:
bullet = bullet.strip()
# Clean up the bullet point
bullet = re.sub(r'\s+', ' ', bullet) # Normalize whitespace
if bullet and len(bullet) > 15: # Ensure substantial content
responsibilities.append(bullet)
return responsibilities
def _extract_education_simple(self, text: str) -> List[str]:
"""Extract education information using improved regex"""
education = []
# Look for education section with better boundary detection
edu_pattern = r'(?i)education[:\s]*\n(.*?)(?=\n\s*(?:certifications?|projects?|$))'
match = re.search(edu_pattern, text, re.DOTALL)
if match:
edu_text = match.group(1)
# Extract bullet points or lines with improved cleaning
edu_lines = re.findall(r'β\s*([^β\n]+)', edu_text)
if not edu_lines:
# Try line-by-line for non-bulleted education
edu_lines = [line.strip() for line in edu_text.split('\n') if line.strip()]
for line in edu_lines:
line = line.strip()
# Clean up the education entry
line = re.sub(r'\s+', ' ', line) # Normalize whitespace
if line and len(line) > 3: # Reduced to catch short entries like "8 years"
education.append(line)
return education
# Convenience function for easy usage
def extract_sections_hf_simple(text: str) -> Dict[str, Any]:
"""
Extract resume sections using simplified Hugging Face approach
Args:
text: Raw resume text
Returns:
Structured resume data
"""
extractor = SimpleHFResumeExtractor()
return extractor.extract_sections_hf_simple(text)
# Test function
def test_simple_hf_extraction():
"""Test the simplified HF extraction with sample resume"""
sample_text = """
Jonathan Edward Nguyen
πSan Diego, CA | 858-900-5036 | π§ jonatngu@icloud.com
Summary
Sun Diego-based Software Engineer, and Developer Hackathon 2025 winner who loves building scalable
automation solutions, AI development, and optimizing workflows.
Technical Skills
β Programming Languages: Python, Java, SQL, Apex, Bash
β Frameworks & Libraries: TensorFlow, PyTorch, Scikit-learn, NumPy, Pandas
β Cloud Platforms: AWS Glue, AWS SageMaker, AWS Orchestration, REST APIs
Professional Experience
TalentLens.AI | Remote | AI Developer | Feb 2025 β Present
β Built an automated test suite for LLM prompts that export reports with performance metrics
β Architected and developed an AI-powered resume screening application using Streamlit
GoFundMe | San Diego, CA | Senior Developer in Test | Oct 2021 β Dec 2024
β Built and maintained robust API and UI test suites in Python, reducing defects by 37%
β Automated environment builds using Apex and Bash, improving deployment times by 30%
Education
β California State San Marcos (May 2012): Bachelor of Arts, Literature and Writing
"""
extractor = SimpleHFResumeExtractor()
result = extractor.extract_sections_hf_simple(sample_text)
print("Simplified HF Extraction Results:")
print(json.dumps(result, indent=2))
return result
if __name__ == "__main__":
test_simple_hf_extraction() |