Spaces:
Running
Running
File size: 11,084 Bytes
102e49d c2f9ec8 102e49d c2f9ec8 102e49d c2f9ec8 102e49d c2f9ec8 102e49d c2f9ec8 102e49d c2f9ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os, re, json, subprocess
from utils.parser import extract_name # <= your helper
from utils.spacy_loader import get_nlp, is_spacy_available
from datetime import datetime
from dateutil.parser import parse as date_parse
# Load spaCy model with fallback
nlp = get_nlp()
# Initialize spaCy matchers only if spaCy is available
if nlp and is_spacy_available():
from spacy.matcher import PhraseMatcher, Matcher
# ----------------------------- data lists -----------------------------
BASE = os.path.dirname(__file__)
SKILLS = json.load(open(os.path.join(BASE, "data/skills.json"))) \
if os.path.exists(os.path.join(BASE,"data/skills.json")) \
else ["python","sql","aws","selenium"]
JOB_TITLES = json.load(open(os.path.join(BASE, "data/job_titles.json")))\
if os.path.exists(os.path.join(BASE,"data/job_titles.json"))\
else []
skill_matcher = PhraseMatcher(nlp.vocab, attr="LOWER")
skill_matcher.add("SKILL", [nlp.make_doc(s) for s in SKILLS])
edu_matcher = Matcher(nlp.vocab)
edu_matcher.add("EDU" , [[{"LOWER":"bachelor"},{"LOWER":"of"},{"IS_TITLE":True,"OP":"+"}]])
edu_matcher.add("CERT", [[{"LOWER":"certified"},{"IS_TITLE":True,"OP":"+"}]])
else:
# Fallback: set matchers to None when spaCy is not available
skill_matcher = None
edu_matcher = None
SKILLS = ["python","sql","aws","selenium"]
JOB_TITLES = []
# ----------------------------- regex helpers --------------------------
# Jonathan's format: Company | Location | Title | Date
ROLE_FOUR_PARTS = re.compile(
r"""^(?P<company>.+?)\s*\|\s*(?P<location>.+?)\s*\|\s*(?P<title>.+?)\s*\|\s*
(?P<dates>(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s+\d{4}
(?:\s*[β-]\s*(?:Present|\w+\s+\d{4}))?)\s*$""", re.I|re.X)
# Original format: Title | Company | Date
ROLE_ONE = re.compile(
r"""^(?P<title>.+?)\s*\|\s*(?P<company>.+?)\s*\|\s*
(?P<dates>(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s+\d{4}
(?:\s*[β-]\s*(?:Present|\w+\s+\d{4}))?)\s*$""", re.I|re.X)
# Also support the original comma/@ format for backward compatibility
ROLE_ONE_COMMA = re.compile(
r"""^(?P<company>.+?)\s*[,@]\s*(?P<title>[^,@]+?)\s+
(?P<dates>(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s+\d{4}
(?:\s*[β-]\s*(?:Present|\w+\s+\d{4}))?)\s*$""", re.I|re.X)
DATE_LINE = re.compile(
r"""^(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s+\d{4}
(?:\s*[β-]\s*(?:Present|\w+\s+\d{4}))?\s*$""", re.I|re.X)
BULLET = re.compile(r"^\s*(?:[-β’Β·]|\*|β)\s+")
HEAD = re.compile(r"^\s*(summary|skills?|technical\s+skills?|education|training|projects?|work\s+experience|experience|professional\s+experience|certifications?)[:\s]*$",re.I)
# ----------------------------- main -----------------------------------
def extract_sections_spacy_fixed(text:str)->dict:
lines = [ln.rstrip() for ln in text.splitlines()]
# Only create spaCy doc if nlp is available
doc = nlp(text) if nlp and is_spacy_available() else None
# Helper function for contact detection
def is_contact(s): return bool(re.search(r"@\w|\d{3}[-.\s]?\d{3}",s))
out = {
"Name" : extract_name(text),
"Summary" : "",
"Skills" : [],
"StructuredExperiences": [],
"Education" : [],
"Training" : []
}
# ---------- skills extraction (FIXED) ------
# Extract ONLY from Technical Skills section to avoid noise
skills_from_section = set()
for i, line in enumerate(lines):
if re.match(r"^\s*technical\s+skills?\s*$", line.strip(), re.I):
# Found the heading, now collect the skills content
for j in range(i + 1, len(lines)):
next_line = lines[j].strip()
if not next_line: # Empty line
continue
if HEAD.match(next_line): # Next section heading
break
if is_contact(next_line): # Contact info
break
# Handle bullet point format like "β Programming Languages: Python, Java, SQL, Apex, Bash"
if next_line.startswith('β'):
# Remove bullet and extract the part after the colon
clean_line = next_line[1:].strip() # Remove β
if ':' in clean_line:
# Split on colon and take the part after it
skills_part = clean_line.split(':', 1)[1].strip()
# Split skills by comma
skills_in_line = re.split(r',\s*', skills_part)
for skill in skills_in_line:
skill = skill.strip()
if skill and len(skill) > 1 and not skill.endswith(')'): # Avoid incomplete entries
skills_from_section.add(skill)
else:
# Handle non-bullet format
skills_in_line = re.split(r',\s*', next_line)
for skill in skills_in_line:
skill = skill.strip()
# Remove bullet points and clean up
skill = re.sub(r'^\s*[β’Β·\-\*β]\s*', '', skill)
if skill and len(skill) > 1: # Avoid single characters
skills_from_section.add(skill)
break
# Use only section-extracted skills to avoid spaCy noise
out["Skills"] = sorted(skills_from_section)
# ---------- summary (improved extraction) ------
# First try: look for content after "Summary" or "Professional Summary" heading
summary_found = False
for i, line in enumerate(lines):
if re.match(r"^\s*(professional\s+)?summary\s*$", line.strip(), re.I):
# Found the heading, now collect the summary content
summary_lines = []
for j in range(i + 1, len(lines)):
next_line = lines[j].strip()
if not next_line: # Empty line
continue
if HEAD.match(next_line): # Next section heading
break
if is_contact(next_line): # Contact info
break
summary_lines.append(next_line)
if summary_lines:
out["Summary"] = " ".join(summary_lines)
summary_found = True
break
# Fallback: original method (first non-heading/non-contact paragraph)
if not summary_found:
for para in re.split(r"\n\s*\n", text):
p = para.strip()
if p and not HEAD.match(p) and not is_contact(p):
out["Summary"] = re.sub(r"^(professional\s+)?summary[:,\s]+", "", p, flags=re.I)
break
# ---------- experiences (FIXED) -------------------------------------------
i=0
while i < len(lines):
ln = lines[i].strip()
# Try four-part format first (Company | Location | Title | Date)
m4 = ROLE_FOUR_PARTS.match(ln)
if m4:
company, location, title, dates = m4.group("company","location","title","dates")
company = f"{company}, {location}" # Combine company and location
i += 1
# Try pipe-separated format (Title | Company | Date)
elif ROLE_ONE.match(ln):
m1 = ROLE_ONE.match(ln)
title, company, dates = m1.group("title","company","dates")
i += 1
# Try comma-separated format (Company, Title Date)
elif ROLE_ONE_COMMA.match(ln):
m2 = ROLE_ONE_COMMA.match(ln)
company, title, dates = m2.group("company","title","dates")
i += 1
# Try two-liner format
elif i+1 < len(lines) and DATE_LINE.match(lines[i+1].strip()):
first = lines[i].strip()
parts = re.split(r"[,@|\|]\s*", first, 1) # Support both comma and pipe
if len(parts) == 2:
title = parts[0].strip()
company = parts[1].strip()
else:
title = first
company = ""
dates = lines[i+1].strip()
i += 2
else:
i += 1
continue
exp = {
"title" : title,
"company" : company,
"date_range" : dates,
"responsibilities": []
}
# FIXED: Collect responsibilities properly
while i < len(lines):
nxt = lines[i].strip()
if not nxt or HEAD.match(nxt) or ROLE_FOUR_PARTS.match(nxt) or ROLE_ONE.match(nxt) or ROLE_ONE_COMMA.match(nxt) or DATE_LINE.match(nxt):
break
if BULLET.match(nxt):
responsibility = BULLET.sub("",nxt).strip()
if responsibility: # Only add non-empty responsibilities
exp["responsibilities"].append(responsibility)
i += 1
out["StructuredExperiences"].append(exp)
# ---------- education / training / certifications -----------------------------------
# Use spaCy matchers if available, otherwise use regex fallback
if doc and edu_matcher and is_spacy_available():
for mid, s, e in edu_matcher(doc):
bucket = "Education" if nlp.vocab.strings[mid]=="EDU" else "Training"
out[bucket].append(doc[s:e].text)
else:
# Regex fallback for education extraction
edu_patterns = [
r"(?i)\b(?:bachelor|master|phd|doctorate|associate).*(?:degree|of|in)\s+([^,\n]+)",
r"(?i)\b(?:bs|ba|ms|ma|mba|phd)\s+(?:in\s+)?([^,\n]+)",
r"(?i)\b(?:university|college|institute).*\n?.*(?:bachelor|master|phd|degree)",
]
for pattern in edu_patterns:
matches = re.findall(pattern, text)
for match in matches:
if isinstance(match, str) and len(match.strip()) > 3:
out["Education"].append(match.strip())
# Also extract certifications section manually
cert_section_found = False
for i, line in enumerate(lines):
if re.match(r"^\s*certifications?\s*$", line.strip(), re.I):
cert_section_found = True
# Collect certification lines
for j in range(i + 1, len(lines)):
next_line = lines[j].strip()
if not next_line: # Empty line
continue
if HEAD.match(next_line): # Next section heading
break
# Split multiple certifications on the same line
certs = re.split(r',\s*', next_line)
for cert in certs:
cert = cert.strip()
if cert and not is_contact(cert):
out["Training"].append(cert)
break
return out |