Spaces:
Running
Running
File size: 21,298 Bytes
c2f9ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import json
import re
from typing import Dict, List, Any
import requests
import os
from datetime import datetime
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class AIResumeExtractor:
def __init__(self, api_key: str = None, model_name: str = "microsoft/DialoGPT-medium"):
"""Initialize the AI extractor with Hugging Face API key"""
self.api_key = api_key or os.getenv('HF_API_TOKEN') or os.getenv('HUGGINGFACE_API_KEY')
self.model_name = model_name
self.base_url = "https://api-inference.huggingface.co/models"
# Available models for different tasks
self.models = {
"text_generation": "microsoft/DialoGPT-medium",
"instruction_following": "microsoft/DialoGPT-medium",
"question_answering": "deepset/roberta-base-squad2",
"summarization": "facebook/bart-large-cnn",
"ner": "dbmdz/bert-large-cased-finetuned-conll03-english"
}
if not self.api_key:
logger.warning("No Hugging Face API key found. Set HF_API_TOKEN or HUGGINGFACE_API_KEY environment variable.")
def _make_api_request(self, model_name: str, payload: Dict[str, Any], max_retries: int = 3) -> Dict[str, Any]:
"""
Make a request to Hugging Face Inference API with retry logic
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
url = f"{self.base_url}/{model_name}"
for attempt in range(max_retries):
try:
response = requests.post(url, headers=headers, json=payload, timeout=60)
if response.status_code == 200:
return response.json()
elif response.status_code == 503:
# Model is loading, wait and retry
logger.info(f"Model {model_name} is loading, waiting...")
import time
time.sleep(15)
continue
else:
logger.error(f"API request failed: {response.status_code} - {response.text}")
break
except requests.exceptions.RequestException as e:
logger.error(f"Request failed (attempt {attempt + 1}): {e}")
if attempt < max_retries - 1:
import time
time.sleep(3)
continue
break
raise Exception(f"Failed to get response from {model_name} after {max_retries} attempts")
def extract_sections_ai(self, text: str) -> Dict[str, Any]:
"""
Use Hugging Face AI models to extract resume sections in a structured format
"""
if not self.api_key:
logger.warning("No API key available, falling back to regex extraction")
from utils.extractor_fixed import extract_sections_spacy_fixed
return extract_sections_spacy_fixed(text)
try:
# Extract different sections using Hugging Face models
name = self._extract_name_hf(text)
summary = self._extract_summary_hf(text)
skills = self._extract_skills_hf(text)
experiences = self._extract_experiences_hf(text)
education = self._extract_education_hf(text)
result = {
"Name": name,
"Summary": summary,
"Skills": skills,
"StructuredExperiences": experiences,
"Education": education,
"Training": []
}
logger.info("β
Hugging Face AI extraction completed")
return self._post_process_extraction(result)
except Exception as e:
logger.error(f"Hugging Face AI extraction failed: {e}")
# Fallback to regex-based extraction
from utils.extractor_fixed import extract_sections_spacy_fixed
return extract_sections_spacy_fixed(text)
def _extract_name_hf(self, text: str) -> str:
"""Extract name using Hugging Face question-answering model"""
try:
payload = {
"inputs": {
"question": "What is the person's full name?",
"context": text[:1000] # First 1000 chars should contain name
}
}
response = self._make_api_request(self.models["question_answering"], payload)
if response and "answer" in response:
name = response["answer"].strip()
# Validate name format
if re.match(r'^[A-Z][a-z]+ [A-Z][a-z]+', name):
return name
except Exception as e:
logger.warning(f"HF name extraction failed: {e}")
# Fallback to regex
return self._extract_name_regex(text)
def _extract_summary_hf(self, text: str) -> str:
"""Extract summary using Hugging Face summarization model"""
try:
# Find summary section first
summary_match = re.search(
r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))',
text, re.DOTALL
)
if summary_match:
summary_text = summary_match.group(1).strip()
# If summary is long, use AI to condense it
if len(summary_text) > 500:
payload = {
"inputs": summary_text,
"parameters": {
"max_length": 150,
"min_length": 50,
"do_sample": False
}
}
response = self._make_api_request(self.models["summarization"], payload)
if response and isinstance(response, list) and len(response) > 0:
return response[0].get("summary_text", summary_text)
return summary_text
except Exception as e:
logger.warning(f"HF summary extraction failed: {e}")
# Fallback to regex
return self._extract_summary_regex(text)
def _extract_skills_hf(self, text: str) -> List[str]:
"""Extract skills using Hugging Face NER model and regex patterns"""
skills = set()
try:
# First, find the technical skills section using regex
skills_match = re.search(
r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:professional\s+experience|experience|education|projects?))',
text, re.DOTALL
)
if skills_match:
skills_text = skills_match.group(1)
# Parse bullet-pointed skills
bullet_lines = re.findall(r'β\s*([^β\n]+)', skills_text)
for line in bullet_lines:
if ':' in line:
# Format: "Category: skill1, skill2, skill3"
skills_part = line.split(':', 1)[1].strip()
individual_skills = re.split(r',\s*', skills_part)
for skill in individual_skills:
skill = skill.strip()
if skill and len(skill) > 1:
skills.add(skill)
# Use NER model to find additional technical terms
try:
payload = {
"inputs": text[:2000] # Limit text length for NER
}
response = self._make_api_request(self.models["ner"], payload)
if response and isinstance(response, list):
for entity in response:
if entity.get("entity_group") in ["MISC", "ORG"] and entity.get("score", 0) > 0.8:
word = entity.get("word", "").strip()
# Filter for technical-looking terms
if re.match(r'^[A-Za-z][A-Za-z0-9\.\-]*$', word) and len(word) > 2:
skills.add(word)
except Exception as e:
logger.warning(f"NER extraction failed: {e}")
except Exception as e:
logger.warning(f"HF skills extraction failed: {e}")
# Enhanced common technical skills detection as fallback
common_skills = [
'Python', 'Java', 'JavaScript', 'TypeScript', 'C++', 'C#', 'SQL', 'NoSQL',
'React', 'Angular', 'Vue', 'Node.js', 'Django', 'Flask', 'Spring',
'AWS', 'Azure', 'GCP', 'Docker', 'Kubernetes', 'Jenkins',
'Git', 'GitHub', 'GitLab', 'Jira', 'Confluence',
'TensorFlow', 'PyTorch', 'Scikit-learn', 'Pandas', 'NumPy', 'Matplotlib',
'MySQL', 'PostgreSQL', 'MongoDB', 'Redis',
'Linux', 'Windows', 'MacOS', 'Ubuntu',
'Selenium', 'Pytest', 'TestNG', 'Postman',
'AWS Glue', 'AWS SageMaker', 'REST APIs', 'Apex', 'Bash'
]
for skill in common_skills:
if re.search(rf'\b{re.escape(skill)}\b', text, re.IGNORECASE):
skills.add(skill)
return sorted(list(skills))
def _extract_experiences_hf(self, text: str) -> List[Dict[str, Any]]:
"""Extract work experiences using Hugging Face question-answering model"""
experiences = []
try:
# First find the experience section using regex
exp_pattern = r'(?i)(?:professional\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|$))'
match = re.search(exp_pattern, text, re.DOTALL)
if not match:
return experiences
exp_text = match.group(1)
# Parse job entries with improved patterns
# Pattern 1: Company | Location | Title | Date
pattern1 = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches1 = re.findall(pattern1, exp_text)
for match in matches1:
company, location, title, dates = match
# Extract responsibilities using QA model
responsibilities = []
try:
# Find the section for this specific job
job_section = self._find_job_section(exp_text, company.strip(), title.strip())
if job_section:
# Use QA model to extract responsibilities
payload = {
"inputs": {
"question": "What are the main responsibilities and achievements?",
"context": job_section
}
}
response = self._make_api_request(self.models["question_answering"], payload)
if response and "answer" in response:
resp_text = response["answer"]
# Split into individual responsibilities
responsibilities = [r.strip() for r in re.split(r'[β’β\n]', resp_text) if r.strip()]
# Fallback to regex if QA didn't work well
if len(responsibilities) < 2:
responsibilities = self._extract_responsibilities_regex(exp_text, company.strip(), title.strip())
except Exception as e:
logger.warning(f"HF responsibility extraction failed: {e}")
responsibilities = self._extract_responsibilities_regex(exp_text, company.strip(), title.strip())
experience = {
"title": title.strip(),
"company": f"{company.strip()}, {location.strip()}",
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
except Exception as e:
logger.warning(f"HF experience extraction failed: {e}")
return experiences
def _extract_education_hf(self, text: str) -> List[str]:
"""Extract education using Hugging Face question-answering model"""
education = []
try:
payload = {
"inputs": {
"question": "What education, degrees, or certifications does this person have?",
"context": text
}
}
response = self._make_api_request(self.models["question_answering"], payload)
if response and "answer" in response:
edu_text = response["answer"]
# Parse the education information
education_items = re.split(r'[,;]', edu_text)
for item in education_items:
item = item.strip()
if item and len(item) > 5: # Reasonable length
education.append(item)
except Exception as e:
logger.warning(f"HF education extraction failed: {e}")
# Fallback to regex if HF extraction didn't work
if not education:
education = self._extract_education_regex(text)
return education
def _find_job_section(self, exp_text: str, company: str, title: str) -> str:
"""Find the specific section for a job in the experience text"""
lines = exp_text.split('\n')
job_lines = []
in_job_section = False
for line in lines:
if company in line and title in line:
in_job_section = True
job_lines.append(line)
elif in_job_section:
if re.match(r'^[A-Z].*\|.*\|.*\|', line): # Next job entry
break
job_lines.append(line)
return '\n'.join(job_lines)
def _extract_name_regex(self, text: str) -> str:
"""Fallback regex name extraction"""
lines = text.split('\n')[:5]
for line in lines:
line = line.strip()
if re.search(r'@|phone|email|linkedin|github|π§|π|π', line.lower()):
continue
name_match = re.match(r'^([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)', line)
if name_match:
return name_match.group(1)
return ""
def _extract_summary_regex(self, text: str) -> str:
"""Fallback regex summary extraction"""
summary_patterns = [
r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))',
r'(?i)objective[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))'
]
for pattern in summary_patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
summary = match.group(1).strip()
summary = re.sub(r'\n+', ' ', summary)
summary = re.sub(r'\s+', ' ', summary)
if len(summary) > 50:
return summary
return ""
def _extract_responsibilities_regex(self, exp_text: str, company: str, title: str) -> List[str]:
"""Extract responsibilities using regex patterns"""
responsibilities = []
# Find the section for this specific job
job_section = self._find_job_section(exp_text, company, title)
if job_section:
# Look for bullet points
bullet_matches = re.findall(r'β\s*([^β\n]+)', job_section)
for match in bullet_matches:
resp = match.strip()
if len(resp) > 20: # Substantial responsibility
responsibilities.append(resp)
return responsibilities
def _extract_education_regex(self, text: str) -> List[str]:
"""Fallback regex education extraction"""
education = []
# Look for education section
edu_pattern = r'(?i)education[:\s]*\n(.*?)(?=\n\s*(?:certifications?|projects?|$))'
match = re.search(edu_pattern, text, re.DOTALL)
if match:
edu_text = match.group(1)
# Look for degree patterns
degree_matches = re.findall(r'β\s*([^β\n]+)', edu_text)
for match in degree_matches:
edu_item = match.strip()
if len(edu_item) > 10:
education.append(edu_item)
return education
def _post_process_extraction(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Clean up and validate the AI-extracted data
"""
# Ensure all required fields exist
default_structure = {
"Name": "",
"Summary": "",
"Skills": [],
"StructuredExperiences": [],
"Education": [],
"Training": []
}
# Merge with defaults
for key, default_value in default_structure.items():
if key not in data:
data[key] = default_value
# Clean up skills (remove duplicates, empty entries)
if data["Skills"]:
data["Skills"] = list(set([
skill.strip()
for skill in data["Skills"]
if skill and skill.strip() and len(skill.strip()) > 1
]))
data["Skills"].sort()
# Clean up experiences
for exp in data["StructuredExperiences"]:
# Ensure all experience fields exist
exp.setdefault("title", "")
exp.setdefault("company", "")
exp.setdefault("date_range", "")
exp.setdefault("responsibilities", [])
# Clean up responsibilities
if exp["responsibilities"]:
exp["responsibilities"] = [
resp.strip()
for resp in exp["responsibilities"]
if resp and resp.strip()
]
# Clean up education and training
for field in ["Education", "Training"]:
if data[field]:
data[field] = [
item.strip()
for item in data[field]
if item and item.strip()
]
return data
# Convenience function for backward compatibility
def extract_sections_ai(text: str) -> Dict[str, Any]:
"""
Extract resume sections using AI
"""
extractor = AIResumeExtractor()
return extractor.extract_sections_ai(text)
# Test function
def test_ai_extraction():
"""Test the Hugging Face AI extraction with sample resume"""
sample_text = """
Jonathan Generic Smith
πSan Diego, CA | 321-123-1234 | π§ testemail@icloud.com
Summary
Results-driven Automation Test Engineer with 8 years of experience in Selenium and Java,
specializing in automation frameworks for financial and insurance domains. Expert in designing,
developing, and executing automated test scripts, ensuring quality software delivery with CI/CD
integration. Adept at working with Agile methodologies and cross-functional teams to improve
software reliability
Technical Skills
β Selenium WebDriver, Java, TestNG, Cucumber, Jenkins, Maven
β GIT, REST APIs, Apex, Bash
β Jira, Agile, CI/CD, Docker, Kubernetes
Professional Experience
Senior Automation Test Engineer | ABC Financial Services | Jan 2021 - Present
β Led automation framework enhancements using Selenium and Java, improving test efficiency.
β Automated end-to-end UI and API testing for financial applications, reducing manual effort by 40%.
Automation Test Engineer | XYZ Insurance Solutions | Jun 2017 - Dec 2020
β Designed and implemented Selenium automation framework using Java and TestNG.
β Developed automated test scripts for insurance policy management applications.
Education
β Bachelor of Technology in Computer Science | ABC University | 2015
"""
print("Testing Hugging Face AI extraction...")
extractor = AIResumeExtractor()
result = extractor.extract_sections_ai(sample_text)
print("Hugging Face AI Extraction Results:")
print(json.dumps(result, indent=2))
return result
if __name__ == "__main__":
test_ai_extraction() |