File size: 3,908 Bytes
c2f9ec8
 
2854e2c
 
 
56325dc
19ea0c5
 
2854e2c
56325dc
2854e2c
c2f9ec8
 
 
 
 
 
2854e2c
 
56325dc
102e49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8f414
 
edfcf73
8f8f414
 
2854e2c
 
 
 
 
 
 
0c91845
8f8f414
 
 
2854e2c
8f8f414
 
102e49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8f414
 
 
2854e2c
8f8f414
 
 
2854e2c
8f8f414
 
2854e2c
8f8f414
 
 
 
 
 
 
 
 
949011b
 
 
 
2854e2c
 
 
 
 
8f8f414
2854e2c
8f8f414
 
 
 
56325dc
2854e2c
56325dc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# TalentLens

import os
from io import BytesIO

import streamlit as st
import fitz  # PyMuPDF
import requests
from dotenv import load_dotenv

from config import supabase, HF_API_TOKEN, HF_HEADERS, HF_MODELS
from utils.parser     import parse_resume, extract_email, summarize_resume
from utils.hybrid_extractor import extract_resume_sections
from utils.builder    import build_resume_from_data
from utils.screening  import evaluate_resumes
from utils.reporting import generate_pdf_report, generate_interview_questions_from_summaries


# ------------------------- Main App Function -------------------------
def main():
    st.set_page_config(
        page_title="TalentLens.AI", 
        layout="centered",
        initial_sidebar_state="collapsed"
    )

    # Hide sidebar completely with CSS
    st.markdown("""
        <style>
            .css-1d391kg {display: none}
            .css-1rs6os {display: none}
            .css-17ziqus {display: none}
            [data-testid="stSidebar"] {display: none}
            [data-testid="collapsedControl"] {display: none}
            .css-1lcbmhc {display: none}
            .css-1outpf7 {display: none}
            .sidebar .sidebar-content {display: none}
        </style>
    """, unsafe_allow_html=True)

    st.markdown("<h1 style='text-align: center;'>TalentLens.AI</h1>", unsafe_allow_html=True)
    st.divider()
    st.markdown("<h3 style='text-align: center;'>AI-Powered Intelligent Resume Screening</h3>", unsafe_allow_html=True)

    # Upload resumes (limit: 10 files)
    uploaded_files = st.file_uploader(
        "Upload Resumes (PDF Only, Max: 10)", 
        accept_multiple_files=True, 
        type=["pdf"]
    )

    if uploaded_files and len(uploaded_files) > 10:
        st.error("⚠️ You can upload a maximum of 10 resumes at a time.")
        return

    # Input job description
    job_description = st.text_area("Enter Job Description")

    # Main action buttons
    col1, col2 = st.columns(2)
    
    with col1:
        # Evaluation trigger
        evaluate_clicked = st.button("πŸ“Š Evaluate Resumes", type="primary", use_container_width=True)
    
    with col2:
        # Format Resume redirect button
        format_clicked = st.button("πŸ“„ Format Resume", use_container_width=True)

    # Handle Format Resume redirect
    if format_clicked:
        st.switch_page("pages/Template.py")

    # Handle Evaluate Resumes
    if evaluate_clicked:
        if not job_description:
            st.error("⚠️ Please enter a job description.")
            return

        if not uploaded_files:
            st.error("⚠️ Please upload at least one resume.")
            return

        st.write("### πŸ“Š Evaluating Resumes...")

        # Resume Evaluation
        shortlisted, removed_candidates = evaluate_resumes(uploaded_files, job_description)

        if not shortlisted:
            st.warning("⚠️ No resumes matched the required keywords.")
        else:
            st.subheader("βœ… Shortlisted Candidates:")
            for candidate in shortlisted:
                st.write(f"**{candidate['name']}**")

            # Generate Interview Questions
            questions = generate_interview_questions_from_summaries(shortlisted)
            st.subheader("🧠 Suggested Interview Questions:")
            for idx, q in enumerate(questions, 1):
                st.markdown(f"{q}")

            # Downloadable PDF Report
            pdf_report = generate_pdf_report(shortlisted, questions)
            st.download_button("Download Shortlist Report", pdf_report, "shortlist.pdf")

        # Removed Candidates Info
        if removed_candidates:
            st.subheader("❌ Resumes Removed:")
            for removed in removed_candidates:
                st.write(f"**{removed['name']}** - {removed['reason']}")

# ------------------------- Run the App -------------------------
if __name__ == "__main__":
    main()