Spaces:
Running
Running
File size: 12,707 Bytes
c2f9ec8 102e49d c2f9ec8 102e49d c2f9ec8 102e49d c2f9ec8 102e49d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# pages/Format_Resume.py
import os, sys, streamlit as st
import json
from io import BytesIO
# Add parent directory to path so we can import utils
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Force reload environment variables for Streamlit
from dotenv import load_dotenv
load_dotenv(override=True)
from utils.hybrid_extractor import extract_resume_sections
from utils.builder import build_resume_from_data
from utils.parser import parse_resume # whatever parse_resume you already have
# Path to your blank template (header/footer only)
template_path = os.path.join(
os.path.dirname(__file__), '..', 'templates', 'blank_resume.docx'
)
st.set_page_config(
page_title='Resume Formatter',
layout='centered',
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with CSS
st.markdown("""
<style>
.css-1d391kg {display: none}
.css-1rs6os {display: none}
.css-17ziqus {display: none}
[data-testid="stSidebar"] {display: none}
[data-testid="collapsedControl"] {display: none}
.css-1lcbmhc {display: none}
.css-1outpf7 {display: none}
.sidebar .sidebar-content {display: none}
</style>
""", unsafe_allow_html=True)
# Home button at the top
if st.button("π Home", help="Return to main TalentLens.AI page"):
st.switch_page("app.py")
st.title('π Resume Formatter')
st.markdown("---")
uploaded = st.file_uploader('Upload Resume (PDF or DOCX)', type=['pdf','docx'])
if not uploaded:
st.info("Please upload a resume to get started.")
# Show help information when no file is uploaded
st.markdown("### π‘ How to Use Resume Formatter")
st.markdown("""
1. **Upload your resume** in PDF or DOCX format
2. **Review extracted data** - our AI will parse your resume sections
3. **Edit if needed** - make any corrections to the extracted information
4. **Generate formatted resume** - download a professionally formatted version
""")
st.markdown("### β¨ Features")
col1, col2 = st.columns(2)
with col1:
st.markdown("""
**π€ AI-Powered Extraction:**
- OpenAI GPT-4o for highest accuracy
- Hugging Face Cloud as backup
- Regex fallback for reliability
""")
with col2:
st.markdown("""
**π Professional Formatting:**
- Clean, modern design
- Consistent layout
- ATS-friendly format
""")
st.stop()
st.success(f'Uploaded: {uploaded.name}')
# 1) Extract raw text
ext = uploaded.name.split('.')[-1].lower()
resume_text = parse_resume(uploaded, ext)
st.subheader('π Raw Resume Text')
st.text_area(
label='Raw Resume Text',
value=resume_text,
height=300,
label_visibility='visible'
)
# 2) Parse into structured fields using improved hybrid approach
st.subheader('π Extracting Resume Data...')
# Show extraction progress
with st.spinner('Analyzing resume with AI models...'):
# Use OpenAI as primary, HF Cloud as backup
data = extract_resume_sections(
resume_text,
prefer_ai=True,
use_openai=True, # Try OpenAI GPT-4o first (best results)
use_hf_cloud=True # Fallback to HF Cloud (good backup)
)
# Show extraction success and method used
from utils.hybrid_extractor import HybridResumeExtractor
extractor = HybridResumeExtractor(prefer_ai=True, use_openai=True, use_hf_cloud=True)
extractor.extract_sections(resume_text) # Just to get the method used
stats = extractor.get_extraction_stats()
method_used = stats.get('method_used', 'unknown')
if method_used == 'openai_gpt4o':
st.success('β
Extracted using OpenAI GPT-4o (highest accuracy)')
elif method_used == 'huggingface_cloud':
st.info('βΉοΈ Extracted using Hugging Face Cloud (good accuracy)')
else:
st.warning('β οΈ Used fallback extraction method')
# Show extraction quality indicators
name_found = bool(data.get('Name'))
experiences_found = len(data.get('StructuredExperiences', []))
skills_found = len(data.get('Skills', []))
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Name", "β
" if name_found else "β", "Found" if name_found else "Missing")
with col2:
st.metric("Job Experiences", experiences_found, f"{experiences_found} positions")
with col3:
st.metric("Technical Skills", skills_found, f"{skills_found} skills")
# π TEMP β remove after test (show raw JSON for debugging)
with st.expander("π§ Debug: Raw Extraction Data"):
import json, textwrap
st.code(textwrap.indent(json.dumps(data, indent=2), " "), language="json")
st.subheader('π Parsed Resume Sections')
# Display sections in a more user-friendly way
col1, col2 = st.columns(2)
with col1:
# Name and Summary
st.markdown("**π€ Personal Information**")
if data.get('Name'):
st.write(f"**Name:** {data['Name']}")
else:
st.error("β Name not found")
if data.get('Summary'):
st.markdown("**π Professional Summary:**")
st.write(data['Summary'])
else:
st.warning("β οΈ No professional summary found")
# Education
st.markdown("**π Education**")
education = data.get('Education', [])
if education:
for edu in education:
st.write(f"β’ {edu}")
else:
st.warning("β οΈ No education information found")
with col2:
# Skills
st.markdown("**π οΈ Technical Skills**")
skills = data.get('Skills', [])
if skills:
# Show skills in a nice format
skills_text = ", ".join(skills)
st.write(skills_text)
# Show skills quality
company_names = [s for s in skills if any(word in s.lower() for word in ['abc', 'xyz', 'financial', 'insurance', 'solutions'])]
if company_names:
st.warning(f"β οΈ Found {len(company_names)} company names in skills (will be cleaned)")
else:
st.error("β No technical skills found")
# Training/Certifications
training = data.get('Training', [])
if training:
st.markdown("**π Certifications/Training**")
for cert in training:
st.write(f"β’ {cert}")
# Work Experience (full width)
st.markdown("**πΌ Professional Experience**")
experiences = data.get('StructuredExperiences', [])
if experiences:
for i, exp in enumerate(experiences, 1):
with st.expander(f"Job {i}: {exp.get('title', 'Unknown Title')} at {exp.get('company', 'Unknown Company')}"):
st.write(f"**Position:** {exp.get('title', 'N/A')}")
st.write(f"**Company:** {exp.get('company', 'N/A')}")
st.write(f"**Duration:** {exp.get('date_range', 'N/A')}")
responsibilities = exp.get('responsibilities', [])
if responsibilities:
st.write("**Key Responsibilities:**")
for resp in responsibilities:
st.write(f"β’ {resp}")
else:
st.warning("β οΈ No responsibilities found for this position")
else:
st.error("β No work experience found")
# Show editable sections for user to modify if needed
st.subheader('βοΈ Edit Extracted Data (Optional)')
with st.expander("Click to edit extracted data before formatting"):
for section, content in data.items():
st.markdown(f"**{section}:**")
# pure list of strings
if isinstance(content, list) and all(isinstance(i, str) for i in content):
edited_content = st.text_area(
label=section,
value="\n".join(content),
height=100,
label_visibility='collapsed',
key=f"edit_{section}"
)
# Update data with edited content
data[section] = [line.strip() for line in edited_content.split('\n') if line.strip()]
# list of dicts β show as JSON (read-only for now)
elif isinstance(content, list) and all(isinstance(i, dict) for i in content):
st.json(content)
# everything else (e.g. single string)
else:
edited_content = st.text_area(
label=section,
value=str(content),
height=100,
label_visibility='collapsed',
key=f"edit_{section}_str"
)
# Update data with edited content
data[section] = edited_content
# 3) Build & download
st.subheader('π Generate Formatted Resume')
# Show what will be included in the formatted resume
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Sections to Include", len([k for k, v in data.items() if v]), "sections")
with col2:
total_content = sum(len(str(v)) for v in data.values() if v)
st.metric("Content Length", f"{total_content:,}", "characters")
with col3:
quality_score = (
(1 if data.get('Name') else 0) +
(1 if data.get('Summary') else 0) +
(1 if data.get('StructuredExperiences') else 0) +
(1 if data.get('Skills') else 0)
) * 25
st.metric("Quality Score", f"{quality_score}%", "completeness")
if st.button('π Generate Formatted Resume', type='primary'):
try:
with st.spinner('Building formatted resume...'):
# Build the resume document
doc = build_resume_from_data(template_path, data)
# Save to buffer
buf = BytesIO()
doc.save(buf)
buf.seek(0)
st.success('β
Resume formatted successfully!')
# Show what was included
st.info(f"""
**Formatted Resume Includes:**
β’ Name: {data.get('Name', 'Not found')}
β’ Professional Summary: {'β
' if data.get('Summary') else 'β'}
β’ Technical Skills: {len(data.get('Skills', []))} items
β’ Work Experience: {len(data.get('StructuredExperiences', []))} positions
β’ Education: {len(data.get('Education', []))} items
""")
# Generate filename with candidate name
candidate_name = data.get('Name', 'Resume').replace(' ', '_')
filename = f"{candidate_name}_Formatted_Resume.docx"
st.download_button(
'π₯ Download Formatted Resume',
data=buf,
file_name=filename,
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document',
help=f"Download the formatted resume for {data.get('Name', 'candidate')}"
)
except Exception as e:
st.error(f"β Error generating formatted resume: {str(e)}")
st.info("π‘ Try editing the extracted data above to fix any issues, or contact support if the problem persists.")
# Add helpful tips
with st.expander("π‘ Tips for Better Results"):
st.markdown("""
**For best extraction results:**
- Ensure your resume has clear section headers (e.g., "Professional Summary", "Technical Skills", "Work Experience")
- Use consistent formatting for job entries (Title | Company | Dates)
- List technical skills clearly, separated by commas
- Include bullet points for job responsibilities
**If extraction isn't perfect:**
- Use the "Edit Extracted Data" section above to make corrections
- The system will learn from different resume formats over time
- OpenAI GPT-4o provides the most accurate extraction when available
""")
# Show extraction method info
with st.expander("π§ Extraction Method Details"):
st.markdown(f"""
**Method Used:** {method_used}
**Available Methods:**
- **OpenAI GPT-4o**: Highest accuracy, best for complex formats
- **Hugging Face Cloud**: Good accuracy, reliable backup
- **Regex Fallback**: Basic extraction, used when AI methods fail
**Current Status:**
- OpenAI Available: {'β
' if stats.get('ai_available') else 'β'}
- AI Preferred: {'β
' if stats.get('prefer_ai') else 'β'}
""")
# Footer navigation and additional actions
st.markdown("---")
st.markdown("### π What's Next?")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("π Return to Home", use_container_width=True):
st.switch_page("app.py")
with col2:
if st.button("π Format Another Resume", use_container_width=True):
st.rerun()
with col3:
st.markdown("**Need Help?**")
st.markdown("Check the tips above or contact support")
# Final footer
st.markdown("---")
st.markdown(
"<div style='text-align: center; color: #666; padding: 20px;'>"
"π <strong>TalentLens.AI</strong> - Powered by AI for intelligent resume processing"
"</div>",
unsafe_allow_html=True
)
|