Spaces:
Running
Running
File size: 16,101 Bytes
c2f9ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
#!/usr/bin/env python3
"""
OpenAI GPT-4o Resume Extractor
This module provides resume extraction using OpenAI's GPT-4o model (GPT-4.1),
which is the latest and most capable model for complex resume parsing.
"""
import json
import re
import logging
import os
from typing import Dict, Any, List, Optional
from openai import OpenAI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class OpenAIResumeExtractor:
"""
Production-ready resume extractor using OpenAI GPT-4o (GPT-4.1)
"""
def __init__(self, api_key: Optional[str] = None, model: str = "gpt-4o"):
"""
Initialize the OpenAI extractor
Args:
api_key: OpenAI API key (optional, will use env var if not provided)
model: OpenAI model to use (gpt-4o is the latest and most capable GPT-4 model)
"""
self.api_key = api_key or os.getenv('OPENAI_API_KEY')
self.model = model
if not self.api_key:
raise ValueError("No OpenAI API key found. Set OPENAI_API_KEY environment variable.")
self.client = OpenAI(api_key=self.api_key)
def extract_sections_openai(self, text: str) -> Dict[str, Any]:
"""
Extract resume sections using OpenAI GPT-4o
Args:
text: Raw resume text
Returns:
Structured resume data
"""
logger.info("Starting OpenAI GPT-4o extraction...")
try:
# Create a comprehensive prompt for structured extraction
prompt = self._create_extraction_prompt(text)
# Make API call to OpenAI
response = self.client.chat.completions.create(
model=self.model,
messages=[
{
"role": "system",
"content": "You are an expert resume parser. Extract information accurately and return valid JSON only."
},
{
"role": "user",
"content": prompt
}
],
temperature=0.1, # Low temperature for consistent results
max_tokens=2000
)
# Parse the response
result_text = response.choices[0].message.content.strip()
# Clean up the response to extract JSON
if "```json" in result_text:
result_text = result_text.split("```json")[1].split("```")[0]
elif "```" in result_text:
result_text = result_text.split("```")[1]
# Parse JSON
result = json.loads(result_text)
# Validate and clean the result
result = self._validate_and_clean_result(result)
# Extract contact info from the original text
contact_info = self._extract_contact_info(text)
result["ContactInfo"] = contact_info
logger.info("β
OpenAI extraction completed successfully")
return result
except Exception as e:
logger.error(f"OpenAI extraction failed: {e}")
# Check if it's an API key issue
if "401" in str(e) or "invalid_api_key" in str(e):
logger.error("β Invalid OpenAI API key - please check your OPENAI_API_KEY environment variable")
# Return empty result to force hybrid system to try other methods
return self._get_empty_result()
# For other errors, fallback to regex extraction
return self._fallback_extraction(text)
def _create_extraction_prompt(self, text: str) -> str:
"""Create a comprehensive prompt for resume extraction"""
prompt = f"""
Extract the following information from this resume text and return it as valid JSON:
RESUME TEXT:
{text}
Extract and return ONLY a JSON object with this exact structure:
{{
"Name": "Full name of the person",
"Summary": "Professional summary or objective (full text)",
"Skills": ["skill1", "skill2", "skill3"],
"StructuredExperiences": [
{{
"title": "Job title",
"company": "Company name",
"date_range": "Date range (e.g., Jan 2021 - Present)",
"responsibilities": ["responsibility 1", "responsibility 2"]
}}
],
"Education": ["degree | institution | year"],
"Training": []
}}
EXTRACTION RULES:
1. Name: Extract the full name from the top of the resume
2. Summary: Extract the complete professional summary/objective section
3. Skills: Extract technical skills only (programming languages, tools, frameworks)
4. StructuredExperiences: For each job, extract:
- title: The job title/position
- company: Company name (include location if provided)
- date_range: Employment dates
- responsibilities: List of bullet points describing what they did
5. Education: Extract degrees, institutions, and graduation years
6. Training: Extract certifications, courses, training programs
IMPORTANT:
- Return ONLY valid JSON, no explanations
- If a section is not found, use empty string or empty array
- For skills, exclude company names and focus on technical skills
- For experiences, look for patterns like "Title | Company | Dates" or similar
- Extract ALL job experiences found in the resume
- Include ALL bullet points under each job as responsibilities
"""
return prompt
def _validate_and_clean_result(self, result: Dict[str, Any]) -> Dict[str, Any]:
"""Validate and clean the extraction result"""
# Ensure all required keys exist
required_keys = ["Name", "Summary", "Skills", "StructuredExperiences", "Education", "Training"]
for key in required_keys:
if key not in result:
result[key] = [] if key in ["Skills", "StructuredExperiences", "Education", "Training"] else ""
# Clean skills - remove company names and duplicates
if result.get("Skills"):
cleaned_skills = []
for skill in result["Skills"]:
skill = skill.strip()
# Skip if it looks like a company name or is too short
if len(skill) > 1 and not self._is_company_name(skill):
cleaned_skills.append(skill)
result["Skills"] = list(set(cleaned_skills)) # Remove duplicates
# Validate experience structure
if result.get("StructuredExperiences"):
cleaned_experiences = []
for exp in result["StructuredExperiences"]:
if isinstance(exp, dict) and exp.get("title") and exp.get("company"):
# Ensure responsibilities is a list
if not isinstance(exp.get("responsibilities"), list):
exp["responsibilities"] = []
cleaned_experiences.append(exp)
result["StructuredExperiences"] = cleaned_experiences
return result
def _get_empty_result(self) -> Dict[str, Any]:
"""Return empty result structure for API failures"""
return {
"Name": "",
"Summary": "",
"Skills": [],
"StructuredExperiences": [],
"Education": [],
"Training": [],
"ContactInfo": {}
}
def _is_company_name(self, text: str) -> bool:
"""Check if text looks like a company name rather than a skill"""
company_indicators = [
"inc", "llc", "corp", "ltd", "company", "solutions", "services",
"systems", "technologies", "financial", "insurance", "abc", "xyz"
]
text_lower = text.lower()
return any(indicator in text_lower for indicator in company_indicators)
def _fallback_extraction(self, text: str) -> Dict[str, Any]:
"""Fallback to regex-based extraction if OpenAI fails"""
logger.info("Using regex fallback extraction...")
try:
from utils.hf_extractor_simple import extract_sections_hf_simple
return extract_sections_hf_simple(text)
except ImportError:
# Basic regex fallback
return {
"Name": self._extract_name_regex(text),
"Summary": self._extract_summary_regex(text),
"Skills": self._extract_skills_regex(text),
"StructuredExperiences": self._extract_experiences_regex(text),
"Education": self._extract_education_regex(text),
"Training": [],
"ContactInfo": self._extract_contact_info(text)
}
def _extract_name_regex(self, text: str) -> str:
"""Regex fallback for name extraction"""
lines = text.split('\n')[:5]
for line in lines:
line = line.strip()
if re.search(r'@|phone|email|linkedin|github', line.lower()):
continue
name_match = re.match(r'^([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)', line)
if name_match:
return name_match.group(1)
return ""
def _extract_summary_regex(self, text: str) -> str:
"""Regex fallback for summary extraction"""
summary_pattern = r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))'
match = re.search(summary_pattern, text, re.DOTALL)
if match:
summary = match.group(1).strip()
summary = re.sub(r'\n+', ' ', summary)
summary = re.sub(r'\s+', ' ', summary)
return summary
return ""
def _extract_skills_regex(self, text: str) -> List[str]:
"""Regex fallback for skills extraction"""
skills = set()
# Look for technical skills section
skills_pattern = r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:experience|education|projects?))'
match = re.search(skills_pattern, text, re.DOTALL)
if match:
skills_text = match.group(1)
# Split by common separators
skill_items = re.split(r'[,;]\s*', skills_text.replace('\n', ' '))
for item in skill_items:
item = item.strip()
if item and len(item) > 1 and len(item) < 30:
skills.add(item)
return sorted(list(skills))
def _extract_experiences_regex(self, text: str) -> List[Dict[str, Any]]:
"""Regex fallback for experience extraction"""
experiences = []
# Look for work experience section
exp_pattern = r'(?i)(?:work\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|$))'
match = re.search(exp_pattern, text, re.DOTALL)
if match:
exp_text = match.group(1)
# Look for job entries with | separators
job_pattern = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches = re.findall(job_pattern, exp_text)
for match in matches:
title, company, dates = match
responsibilities = []
# Look for bullet points after this job
job_section = exp_text[exp_text.find(f"{title}|{company}|{dates}"):]
bullets = re.findall(r'[-β’]\s*([^-β’\n]+)', job_section)
responsibilities = [bullet.strip() for bullet in bullets if len(bullet.strip()) > 10]
experience = {
"title": title.strip(),
"company": company.strip(),
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
return experiences
def _extract_education_regex(self, text: str) -> List[str]:
"""Regex fallback for education extraction"""
education = []
edu_pattern = r'(?i)education[:\s]*\n(.*?)(?=\n\s*(?:certifications?|projects?|$))'
match = re.search(edu_pattern, text, re.DOTALL)
if match:
edu_text = match.group(1)
edu_lines = [line.strip() for line in edu_text.split('\n') if line.strip()]
for line in edu_lines:
if len(line) > 10: # Filter out short lines
education.append(line)
return education
def _extract_contact_info(self, text: str) -> Dict[str, str]:
"""Extract contact information (email, phone, LinkedIn)"""
contact_info = {}
# Extract email
email_match = re.search(r'[\w\.-]+@[\w\.-]+\.\w+', text)
if email_match:
contact_info["email"] = email_match.group(0)
# Extract phone
phone_patterns = [
r'\+?1?[-.\s]?\(?(\d{3})\)?[-.\s]?(\d{3})[-.\s]?(\d{4})',
r'(\d{3})[-.\s](\d{3})[-.\s](\d{4})',
r'\+\d{1,3}[-.\s]?\d{3}[-.\s]?\d{3}[-.\s]?\d{4}'
]
for pattern in phone_patterns:
phone_match = re.search(pattern, text)
if phone_match:
contact_info["phone"] = phone_match.group(0)
break
# Extract LinkedIn
linkedin_patterns = [
r'linkedin\.com/in/[\w-]+',
r'linkedin\.com/[\w-]+',
r'(?i)linkedin[:\s]+[\w.-]+',
]
for pattern in linkedin_patterns:
linkedin_match = re.search(pattern, text)
if linkedin_match:
linkedin_url = linkedin_match.group(0)
if not linkedin_url.startswith('http'):
linkedin_url = f"https://{linkedin_url}"
contact_info["linkedin"] = linkedin_url
break
return contact_info
# Convenience function for easy usage
def extract_sections_openai(text: str, api_key: Optional[str] = None) -> Dict[str, Any]:
"""
Extract resume sections using OpenAI GPT-4o (GPT-4.1)
Args:
text: Raw resume text
api_key: OpenAI API key (optional)
Returns:
Structured resume data
"""
extractor = OpenAIResumeExtractor(api_key=api_key)
return extractor.extract_sections_openai(text)
# Test function
def test_openai_extraction():
"""Test the OpenAI extraction with sample resume"""
sample_text = """
John Doe
Selenium Java Automation Engineer
Email: johndoe@example.com | Phone: +1-123-456-7890
Professional Summary
Results-driven Automation Test Engineer with 8 years of experience in Selenium and Java,
specializing in automation frameworks for financial and insurance domains.
Technical Skills
Selenium WebDriver, Java, TestNG, Cucumber, Jenkins, Maven, Git, REST Assured, Postman,
JIRA, Agile/Scrum, CI/CD
Work Experience
Senior Automation Test Engineer | ABC Financial Services | Jan 2021 - Present
- Led automation framework enhancements using Selenium and Java, improving test efficiency.
- Automated end-to-end UI and API testing for financial applications, reducing manual effort by 40%.
Automation Test Engineer | XYZ Insurance Solutions | Jun 2017 - Dec 2020
- Designed and implemented Selenium automation framework using Java and TestNG.
- Developed automated test scripts for insurance policy management applications.
Education
Bachelor of Technology in Computer Science | ABC University | 2015
"""
extractor = OpenAIResumeExtractor()
result = extractor.extract_sections_openai(sample_text)
print("OpenAI Extraction Results:")
print(json.dumps(result, indent=2))
return result
if __name__ == "__main__":
test_openai_extraction() |