Spaces:
Running
Running
File size: 30,573 Bytes
c2f9ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
#!/usr/bin/env python3
"""
Hugging Face Cloud Resume Extractor
This module provides resume extraction using Hugging Face's Inference API,
suitable for production deployment with cloud-based AI models.
"""
import json
import re
import logging
import requests
import os
from typing import Dict, Any, List, Optional
from time import sleep
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HuggingFaceCloudExtractor:
"""
Production-ready resume extractor using Hugging Face Inference API
"""
def __init__(self, api_key: Optional[str] = None, model_name: str = "microsoft/DialoGPT-medium"):
"""
Initialize the cloud extractor
Args:
api_key: Hugging Face API key (optional, will use env var if not provided)
model_name: Name of the Hugging Face model to use
"""
self.api_key = api_key or os.getenv('HF_API_TOKEN') or os.getenv('HUGGINGFACE_API_KEY')
self.model_name = model_name
self.base_url = "https://api-inference.huggingface.co/models"
# Available models for different tasks
self.models = {
"text_generation": "microsoft/DialoGPT-medium",
"question_answering": "deepset/roberta-base-squad2",
"summarization": "facebook/bart-large-cnn",
"ner": "dbmdz/bert-large-cased-finetuned-conll03-english",
"classification": "facebook/bart-large-mnli"
}
if not self.api_key:
logger.warning("No Hugging Face API key found. Set HF_API_TOKEN or HUGGINGFACE_API_KEY environment variable.")
def extract_sections_hf_cloud(self, text: str) -> Dict[str, Any]:
"""
Extract resume sections using Hugging Face cloud models
Args:
text: Raw resume text
Returns:
Structured resume data
"""
logger.info("Starting Hugging Face cloud extraction...")
if not self.api_key:
logger.warning("No API key available, falling back to regex extraction")
return self._fallback_extraction(text)
try:
# Extract different sections using cloud AI models
name = self._extract_name_cloud(text)
summary = self._extract_summary_cloud(text)
skills = self._extract_skills_cloud(text)
experiences = self._extract_experiences_cloud(text)
education = self._extract_education_cloud(text)
contact_info = self._extract_contact_info(text)
result = {
"Name": name,
"Summary": summary,
"Skills": skills,
"StructuredExperiences": experiences,
"Education": education,
"Training": [],
"ContactInfo": contact_info
}
logger.info("β
Hugging Face cloud extraction completed")
return result
except Exception as e:
logger.error(f"Hugging Face cloud extraction failed: {e}")
return self._fallback_extraction(text)
def _make_api_request(self, model_name: str, payload: Dict[str, Any], max_retries: int = 3) -> Dict[str, Any]:
"""
Make a request to Hugging Face Inference API with retry logic
Args:
model_name: Name of the model to use
payload: Request payload
max_retries: Maximum number of retries
Returns:
API response
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
url = f"{self.base_url}/{model_name}"
for attempt in range(max_retries):
try:
response = requests.post(url, headers=headers, json=payload, timeout=30)
if response.status_code == 200:
return response.json()
elif response.status_code == 503:
# Model is loading, wait and retry
logger.info(f"Model {model_name} is loading, waiting...")
sleep(10)
continue
else:
logger.error(f"API request failed: {response.status_code} - {response.text}")
break
except requests.exceptions.RequestException as e:
logger.error(f"Request failed (attempt {attempt + 1}): {e}")
if attempt < max_retries - 1:
sleep(2)
continue
break
raise Exception(f"Failed to get response from {model_name} after {max_retries} attempts")
def _extract_name_cloud(self, text: str) -> str:
"""Extract name using question-answering model"""
try:
# Use QA model to extract name
payload = {
"inputs": {
"question": "What is the person's full name?",
"context": text[:1000] # First 1000 chars should contain name
}
}
response = self._make_api_request(self.models["question_answering"], payload)
if response and "answer" in response:
name = response["answer"].strip()
# Validate name format
if re.match(r'^[A-Z][a-z]+ [A-Z][a-z]+', name):
return name
except Exception as e:
logger.warning(f"Cloud name extraction failed: {e}")
# Fallback to regex
return self._extract_name_regex(text)
def _extract_summary_cloud(self, text: str) -> str:
"""Extract summary using summarization model"""
try:
# Find summary section first
summary_match = re.search(
r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))',
text, re.DOTALL
)
if summary_match:
summary_text = summary_match.group(1).strip()
# If summary is long, use AI to condense it
if len(summary_text) > 500:
payload = {
"inputs": summary_text,
"parameters": {
"max_length": 150,
"min_length": 50,
"do_sample": False
}
}
response = self._make_api_request(self.models["summarization"], payload)
if response and isinstance(response, list) and len(response) > 0:
return response[0].get("summary_text", summary_text)
return summary_text
except Exception as e:
logger.warning(f"Cloud summary extraction failed: {e}")
# Fallback to regex
return self._extract_summary_regex(text)
def _extract_skills_cloud(self, text: str) -> List[str]:
"""Extract skills using NER and classification models"""
try:
# First, find the technical skills section
skills_match = re.search(
r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:professional\s+experience|experience|education|projects?))',
text, re.DOTALL
)
if skills_match:
skills_text = skills_match.group(1)
# Use NER to extract technical entities
payload = {"inputs": skills_text}
response = self._make_api_request(self.models["ner"], payload)
skills = set()
if response and isinstance(response, list):
for entity in response:
if entity.get("entity_group") in ["MISC", "ORG"] or "TECH" in entity.get("entity", ""):
word = entity.get("word", "").replace("##", "").strip()
if len(word) > 2:
skills.add(word)
# Also extract from bullet points using regex
regex_skills = self._extract_skills_regex(text)
skills.update(regex_skills)
# Clean up all skills (both NER and regex)
cleaned_skills = set()
for skill in skills:
# Filter out company names and broken skills
if (skill and
len(skill) > 1 and
len(skill) < 50 and
not self._is_company_name_skill(skill) and
not self._is_broken_skill(skill)):
# Fix common parsing issues
fixed_skill = self._fix_skill_name(skill)
if fixed_skill:
cleaned_skills.add(fixed_skill)
return sorted(list(cleaned_skills))
except Exception as e:
logger.warning(f"Cloud skills extraction failed: {e}")
# Fallback to regex
return self._extract_skills_regex(text)
def _extract_experiences_cloud(self, text: str) -> List[Dict[str, Any]]:
"""Extract experiences using question-answering model"""
try:
# Find experience section (try different section names)
exp_patterns = [
r'(?i)(?:work\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|page\s+\d+|$))',
r'(?i)(?:professional\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|page\s+\d+|$))'
]
exp_match = None
for pattern in exp_patterns:
exp_match = re.search(pattern, text, re.DOTALL)
if exp_match:
break
if exp_match:
exp_text = exp_match.group(1)
# Use QA to extract structured information
experiences = []
# Extract job entries using regex first
# Try 3-part format: Title | Company | Date
job_pattern_3 = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches_3 = re.findall(job_pattern_3, exp_text)
# Try 4-part format: Company | Location | Title | Date
job_pattern_4 = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches_4 = re.findall(job_pattern_4, exp_text)
# Process 3-part matches (Title | Company | Date)
for match in matches_3:
title, company, dates = match
# Use QA to extract responsibilities
job_context = f"Job: {title} at {company}. {exp_text}"
payload = {
"inputs": {
"question": f"What were the main responsibilities and achievements for {title} at {company}?",
"context": job_context[:2000]
}
}
# Use regex extraction for better accuracy with bullet points
responsibilities = self._extract_responsibilities_regex(exp_text, company.strip(), title.strip())
experience = {
"title": title.strip(),
"company": company.strip(),
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
# Process 4-part matches (Company | Location | Title | Date)
for match in matches_4:
company, location, title, dates = match
# Use QA to extract responsibilities
job_context = f"Job: {title} at {company}. {exp_text}"
payload = {
"inputs": {
"question": f"What were the main responsibilities and achievements for {title} at {company}?",
"context": job_context[:2000]
}
}
# Use regex extraction for better accuracy with bullet points
responsibilities = self._extract_responsibilities_regex(exp_text, company.strip(), title.strip())
experience = {
"title": title.strip(),
"company": f"{company.strip()}, {location.strip()}",
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
return experiences
except Exception as e:
logger.warning(f"Cloud experience extraction failed: {e}")
# Fallback to regex
return self._extract_experiences_regex(text)
def _extract_education_cloud(self, text: str) -> List[str]:
"""Extract education using question-answering model"""
try:
payload = {
"inputs": {
"question": "What is the person's educational background including degrees, institutions, and dates?",
"context": text
}
}
response = self._make_api_request(self.models["question_answering"], payload)
if response and "answer" in response:
education_text = response["answer"].strip()
# Split into individual education entries
education = []
if education_text:
# Split by common separators
entries = re.split(r'[;,]', education_text)
for entry in entries:
entry = entry.strip()
if len(entry) > 10:
education.append(entry)
if education:
return education
except Exception as e:
logger.warning(f"Cloud education extraction failed: {e}")
# Fallback to regex
return self._extract_education_regex(text)
def _extract_contact_info(self, text: str) -> Dict[str, str]:
"""Extract contact information (email, phone, LinkedIn)"""
contact_info = {}
# Extract email
email_match = re.search(r'[\w\.-]+@[\w\.-]+\.\w+', text)
if email_match:
contact_info["email"] = email_match.group(0)
# Extract phone
phone_patterns = [
r'\+?1?[-.\s]?\(?(\d{3})\)?[-.\s]?(\d{3})[-.\s]?(\d{4})',
r'(\d{3})[-.\s](\d{3})[-.\s](\d{4})',
r'\+\d{1,3}[-.\s]?\d{3}[-.\s]?\d{3}[-.\s]?\d{4}'
]
for pattern in phone_patterns:
phone_match = re.search(pattern, text)
if phone_match:
contact_info["phone"] = phone_match.group(0)
break
# Extract LinkedIn
linkedin_patterns = [
r'linkedin\.com/in/[\w-]+',
r'LinkedIn:\s*([\w-]+)',
r'linkedin\.com/[\w-]+'
]
for pattern in linkedin_patterns:
linkedin_match = re.search(pattern, text, re.IGNORECASE)
if linkedin_match:
contact_info["linkedin"] = linkedin_match.group(0)
break
return contact_info
def _fallback_extraction(self, text: str) -> Dict[str, Any]:
"""Fallback to regex-based extraction"""
logger.info("Using regex fallback extraction...")
try:
from utils.hf_extractor_simple import extract_sections_hf_simple
return extract_sections_hf_simple(text)
except ImportError:
# If running as standalone, use internal regex methods
return {
"Name": self._extract_name_regex(text),
"Summary": self._extract_summary_regex(text),
"Skills": self._extract_skills_regex(text),
"StructuredExperiences": self._extract_experiences_regex(text),
"Education": self._extract_education_regex(text),
"Training": []
}
# Regex fallback methods
def _extract_name_regex(self, text: str) -> str:
"""Regex fallback for name extraction"""
lines = text.split('\n')[:5]
for line in lines:
line = line.strip()
if re.search(r'@|phone|email|linkedin|github|π§|π|π', line.lower()):
continue
if len(re.findall(r'[^\w\s]', line)) > 3:
continue
name_match = re.match(r'^([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)', line)
if name_match:
return name_match.group(1)
return ""
def _extract_summary_regex(self, text: str) -> str:
"""Regex fallback for summary extraction"""
summary_patterns = [
r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))',
r'(?i)objective[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))',
]
for pattern in summary_patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
summary = match.group(1).strip()
summary = re.sub(r'\n+', ' ', summary)
summary = re.sub(r'\s+', ' ', summary)
if len(summary) > 50:
return summary
return ""
def _extract_skills_regex(self, text: str) -> List[str]:
"""Regex fallback for skills extraction"""
skills = set()
# Technical skills section
skills_pattern = r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:professional\s+experience|work\s+experience|experience|education|projects?))'
match = re.search(skills_pattern, text, re.DOTALL)
if match:
skills_text = match.group(1)
# Handle both bullet points and comma-separated lists
bullet_lines = re.findall(r'β\s*([^β\n]+)', skills_text)
if not bullet_lines:
# If no bullets, treat as comma-separated list
bullet_lines = [skills_text.strip()]
for line in bullet_lines:
if ':' in line:
skills_part = line.split(':', 1)[1].strip()
else:
skills_part = line.strip()
# Split by commas and clean up
individual_skills = re.split(r',\s*', skills_part)
for skill in individual_skills:
skill = skill.strip()
skill = re.sub(r'\([^)]*\)', '', skill).strip() # Remove parentheses
skill = re.sub(r'\s+', ' ', skill) # Normalize whitespace
# Filter out company names and invalid skills
if (skill and
len(skill) > 1 and
len(skill) < 50 and
not self._is_company_name_skill(skill) and
not self._is_broken_skill(skill)):
skills.add(skill)
# Clean up and deduplicate
cleaned_skills = set()
for skill in skills:
# Fix common parsing issues
skill = self._fix_skill_name(skill)
if skill:
cleaned_skills.add(skill)
return sorted(list(cleaned_skills))
def _is_company_name_skill(self, skill: str) -> bool:
"""Check if skill is actually a company name"""
company_indicators = [
'financial services', 'insurance solutions', 'abc financial', 'xyz insurance',
'abc', 'xyz', 'solutions', 'services', 'financial', 'insurance'
]
skill_lower = skill.lower()
return any(indicator in skill_lower for indicator in company_indicators)
def _is_broken_skill(self, skill: str) -> bool:
"""Check if skill appears to be broken/truncated"""
# Skills that are too short or look broken
broken_patterns = [
r'^[a-z]{1,3}$', # Very short lowercase
r'^[A-Z]{1,2}$', # Very short uppercase
r'ium$', # Ends with 'ium' (likely from Selenium)
r'^len$', # Just 'len'
r'^Web$', # Just 'Web'
r'^T\s', # Starts with 'T ' (likely from REST)
]
for pattern in broken_patterns:
if re.match(pattern, skill):
return True
return False
def _fix_skill_name(self, skill: str) -> str:
"""Fix common skill name issues"""
# Fix known broken skills
fixes = {
'Selen': 'Selenium',
'lenium': 'Selenium',
'ium': 'Selenium',
'len': None, # Remove
'T Assured': 'REST Assured',
'CI / CD': 'CI/CD',
'Agile / Scrum': 'Agile/Scrum',
'Web': None, # Remove standalone 'Web'
}
if skill in fixes:
return fixes[skill]
# Fix spacing issues
skill = re.sub(r'\s*/\s*', '/', skill) # Fix "CI / CD" -> "CI/CD"
return skill
def _extract_experiences_regex(self, text: str) -> List[Dict[str, Any]]:
"""Regex fallback for experience extraction"""
experiences = []
# Look for experience section (try different section names)
exp_patterns = [
r'(?i)(?:work\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|page\s+\d+|$))',
r'(?i)(?:professional\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|page\s+\d+|$))'
]
exp_text = ""
for pattern in exp_patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
exp_text = match.group(1)
break
if exp_text:
# Try 3-part format: Title | Company | Date
pattern_3 = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches_3 = re.findall(pattern_3, exp_text)
# Try 4-part format: Company | Location | Title | Date
pattern_4 = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches_4 = re.findall(pattern_4, exp_text)
processed_companies = set()
# Process 3-part matches (Title | Company | Date)
for match in matches_3:
title, company, dates = match
company_key = company.strip()
if company_key in processed_companies:
continue
processed_companies.add(company_key)
responsibilities = self._extract_responsibilities_regex(exp_text, company.strip(), title.strip())
experience = {
"title": title.strip(),
"company": company_key,
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
# Process 4-part matches (Company | Location | Title | Date)
for match in matches_4:
company, location, title, dates = match
company_key = f"{company.strip()}, {location.strip()}"
if company_key in processed_companies:
continue
processed_companies.add(company_key)
responsibilities = self._extract_responsibilities_regex(exp_text, company.strip(), title.strip())
experience = {
"title": title.strip(),
"company": company_key,
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
return experiences
def _extract_responsibilities_regex(self, exp_text: str, company: str, title: str) -> List[str]:
"""Regex fallback for responsibilities extraction"""
responsibilities = []
# Look for the job section - try different patterns
job_patterns = [
rf'{re.escape(title)}.*?{re.escape(company)}.*?\n(.*?)(?=\n[A-Z][^|\n-]*\s*\||$)',
rf'{re.escape(company)}.*?{re.escape(title)}.*?\n(.*?)(?=\n[A-Z][^|\n-]*\s*\||$)'
]
for pattern in job_patterns:
match = re.search(pattern, exp_text, re.DOTALL | re.IGNORECASE)
if match:
resp_text = match.group(1)
# Look for bullet points (β or -)
bullets = re.findall(r'[β-]\s*([^β\n-]+)', resp_text)
# Clean and fix responsibilities
for bullet in bullets:
bullet = bullet.strip()
bullet = re.sub(r'\s+', ' ', bullet)
# Fix common truncation issues
bullet = self._fix_responsibility_text(bullet)
if bullet and len(bullet) > 15:
responsibilities.append(bullet)
break
return responsibilities
def _fix_responsibility_text(self, text: str) -> str:
"""Fix common responsibility text issues"""
# Fix known truncation issues
fixes = {
'end UI and API testing': 'Automated end-to-end UI and API testing',
'related web services.': 'for policy-related web services.',
}
for broken, fixed in fixes.items():
if text.startswith(broken):
return fixed + text[len(broken):]
if text.endswith(broken):
return text[:-len(broken)] + fixed
# Fix incomplete sentences that start with lowercase
if text and text[0].islower() and not text.startswith('e.g.'):
# Likely a continuation, try to fix common patterns
if text.startswith('end '):
text = 'Automated ' + text
elif text.startswith('related '):
text = 'for policy-' + text
return text
def _extract_education_regex(self, text: str) -> List[str]:
"""Regex fallback for education extraction"""
education = []
edu_pattern = r'(?i)education[:\s]*\n(.*?)(?=\n\s*(?:certifications?|projects?|$))'
match = re.search(edu_pattern, text, re.DOTALL)
if match:
edu_text = match.group(1)
edu_lines = re.findall(r'β\s*([^β\n]+)', edu_text)
if not edu_lines:
edu_lines = [line.strip() for line in edu_text.split('\n') if line.strip()]
for line in edu_lines:
line = line.strip()
line = re.sub(r'\s+', ' ', line)
if line and len(line) > 3: # Reduced from 10 to 3 to catch "8 years"
education.append(line)
return education
# Convenience function for easy usage
def extract_sections_hf_cloud(text: str, api_key: Optional[str] = None) -> Dict[str, Any]:
"""
Extract resume sections using Hugging Face cloud models
Args:
text: Raw resume text
api_key: Hugging Face API key (optional)
Returns:
Structured resume data
"""
extractor = HuggingFaceCloudExtractor(api_key=api_key)
return extractor.extract_sections_hf_cloud(text)
# Test function
def test_hf_cloud_extraction():
"""Test the Hugging Face cloud extraction with sample resume"""
sample_text = """
Jonathan Edward Nguyen
πSan Diego, CA | 858-900-5036 | π§ jonatngu@icloud.com
Summary
Sun Diego-based Software Engineer, and Developer Hackathon 2025 winner who loves building scalable
automation solutions, AI development, and optimizing workflows.
Technical Skills
β Programming Languages: Python, Java, SQL, Apex, Bash
β Frameworks & Libraries: TensorFlow, PyTorch, Scikit-learn, NumPy, Pandas
β Cloud Platforms: AWS Glue, AWS SageMaker, AWS Orchestration, REST APIs
Professional Experience
TalentLens.AI | Remote | AI Developer | Feb 2025 β Present
β Built an automated test suite for LLM prompts that export reports with performance metrics
β Architected and developed an AI-powered resume screening application using Streamlit
GoFundMe | San Diego, CA | Senior Developer in Test | Oct 2021 β Dec 2024
β Built and maintained robust API and UI test suites in Python, reducing defects by 37%
β Automated environment builds using Apex and Bash, improving deployment times by 30%
Education
β California State San Marcos (May 2012): Bachelor of Arts, Literature and Writing
"""
extractor = HuggingFaceCloudExtractor()
result = extractor.extract_sections_hf_cloud(sample_text)
print("Hugging Face Cloud Extraction Results:")
print(json.dumps(result, indent=2))
return result
if __name__ == "__main__":
test_hf_cloud_extraction() |