Spaces:
Sleeping
Sleeping
import io | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import requests, validators | |
import torch | |
import pathlib | |
from PIL import Image | |
from transformers import DetrFeatureExtractor, DetrForSegmentation | |
from transformers.models.detr.feature_extraction_detr import rgb_to_id | |
import os | |
def detect_objects(model_name,url_input,image_input,threshold): | |
if 'maskformer' in model_name: | |
if validators.url(url_input): | |
image = Image.open(requests.get(url_input, stream=True).raw) | |
tb_label = "Confidence Values URL" | |
elif image_input: | |
image = image_input | |
tb_label = "Confidence Values Upload" | |
# NOTE: Pulling from the example on https://huggingface.co/facebook/maskformer-swin-large-coco | |
# and https://huggingface.co/spaces/ajcdp/Image-Segmentation-Gradio/blob/main/app.py | |
processor = MaskFormerImageProcessor.from_pretrained(model_name) | |
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) | |
target_size = (img.shape[0], img.shape[1]) | |
inputs = preprocessor(images=img, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
outputs.class_queries_logits = outputs.class_queries_logits.cpu() | |
outputs.masks_queries_logits = outputs.masks_queries_logits.cpu() | |
results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach() | |
results = torch.argmax(results, dim=0).numpy() | |
results = visualize_instance_seg_mask(results) | |
return results, "EMPTY" | |
# for result in results: | |
# boxes = result.boxes.cpu().numpy() | |
# for i, box in enumerate(boxes): | |
# # r = box.xyxy[0].astype(int) | |
# coordinates = box.xyxy[0].astype(int) | |
# try: | |
# label = YOLOV8_LABELS[int(box.cls)] | |
# except: | |
# label = "ERROR" | |
# try: | |
# confi = float(box.conf) | |
# except: | |
# confi = 0.0 | |
# # final_str_abv += str() + "__" + str(box.cls) + "__" + str(box.conf) + "__" + str(box) + "\n" | |
# if confi >= threshold: | |
# final_str_abv += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n" | |
# else: | |
# final_str_else += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n" | |
# final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else | |
# return render, final_str | |
elif "detr" in model_name: | |
# NOTE: Using the example on https://huggingface.co/facebook/detr-resnet-50-panoptic | |
if validators.url(url_input): | |
image = Image.open(requests.get(url_input, stream=True).raw) | |
tb_label = "Confidence Values URL" | |
elif image_input: | |
image = image_input | |
tb_label = "Confidence Values Upload" | |
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name) | |
model = DetrForSegmentation.from_pretrained(model_name) | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format | |
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0) | |
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0] | |
# the segmentation is stored in a special-format png | |
panoptic_seg = Image.open(io.BytesIO(result["png_string"])) | |
panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8) | |
# retrieve the ids corresponding to each mask | |
panoptic_seg_id = rgb_to_id(panoptic_seg) | |
return gr.Image.update(), "EMPTY" | |
#Visualize prediction | |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) | |
# return [viz_img, processed_outputs] | |
# print(type(viz_img)) | |
final_str_abv = "" | |
final_str_else = "" | |
for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True): | |
box = [round(i, 2) for i in box.tolist()] | |
if score.item() >= threshold: | |
final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n" | |
else: | |
final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n" | |
# https://docs.python.org/3/library/string.html#format-examples | |
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else | |
return viz_img, final_str | |
else: | |
raise NameError(f"Model name {model_name} not prepared") | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def set_example_url(example: list) -> dict: | |
return gr.Textbox.update(value=example[0]) | |
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>""" | |
description = """ | |
Links to HuggingFace Models: | |
- [facebook/detr-resnet-50-panoptic](https://huggingface.co/facebook/detr-resnet-50-panoptic) | |
- [facebook/detr-resnet-101-panoptic](https://huggingface.co/facebook/detr-resnet-101-panoptic) | |
- [facebook/maskformer-swin-large-coco](https://huggingface.co/facebook/maskformer-swin-large-coco) | |
""" | |
models = ["facebook/detr-resnet-50-panoptic","facebook/detr-resnet-101-panoptic","facebook/maskformer-swin-large-coco"] | |
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"] | |
# twitter_link = """ | |
# [](https://twitter.com/nickmuchi) | |
# """ | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
''' | |
demo = gr.Blocks(css=css) | |
def changing(): | |
# https://discuss.huggingface.co/t/how-to-programmatically-enable-or-disable-components/52350/4 | |
return gr.Button.update(interactive=True), gr.Button.update(interactive=True) | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
# gr.Markdown(twitter_link) | |
options = gr.Dropdown(choices=models,label='Select Image Segmentation Model',show_label=True) | |
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold') | |
with gr.Tabs(): | |
with gr.TabItem('Image URL'): | |
with gr.Row(): | |
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..') | |
img_output_from_url = gr.Image(shape=(650,650)) | |
with gr.Row(): | |
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls]) | |
url_but = gr.Button('Detect', interactive=False) | |
with gr.TabItem('Image Upload'): | |
with gr.Row(): | |
img_input = gr.Image(type='pil') | |
img_output_from_upload= gr.Image(shape=(650,650)) | |
with gr.Row(): | |
example_images = gr.Dataset(components=[img_input], | |
samples=[[path.as_posix()] | |
for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) # Can't get case_sensitive to work | |
img_but = gr.Button('Detect', interactive=False) | |
# output_text1 = gr.outputs.Textbox(label="Confidence Values") | |
output_text1 = gr.components.Textbox(label="Confidence Values") | |
# https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this | |
options.change(fn=changing, inputs=[], outputs=[img_but, url_but]) | |
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True) | |
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True) | |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True) | |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True) | |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True) | |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True) | |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input]) | |
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input]) | |
# gr.Markdown("") | |
# demo.launch(enable_queue=True) | |
demo.launch() #removed (share=True) |