SceneDreamer / scripts /pcg_cache.py
gabrielsemiceki9's picture
Upload 125 files
b72e09b verified
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import csv
import time
import random
import cv2
import os
import torch
from tqdm import tqdm
from argparse import ArgumentParser
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--terrain', type=str, required=True, help='directory path to terrain dataset')
parser.add_argument('--outdir', type=str, required=True)
assert os.path.exists("./scenedreamer_released.pt")
pcg_asset = torch.load("./scenedreamer_released.pt", map_location='cpu')
args = parser.parse_args()
terrain_dir = args.terrain
outdir = args.outdir
sample_height = 256
sample_size = 1024
os.makedirs(outdir, exist_ok=True)
trees_models = pcg_asset['assets']
# can be customized
biome_trees_dict = {
'desert': [],
'savanna': [5],
'twoodland': [1, 7],
'tundra': [],
'seasonal forest': [1, 2],
'rainforest': [1, 2, 3],
'temp forest': [4],
'temp rainforest': [0, 3],
'boreal': [5,6,7],
'water': [],
}
biome2mclabels = torch.tensor([28, 9, 8, 1, 9, 8, 9, 8, 30, 26], dtype=torch.int32)
biome_names = list(biome_trees_dict.keys())
chunk_grid_x, chunk_grid_y = torch.meshgrid(torch.arange(sample_size), torch.arange(sample_size))
terrain_list = os.listdir(terrain_dir)
for world in tqdm(terrain_list):
voxel_t = torch.zeros(sample_height, sample_size, sample_size).to(torch.int32)
current_dir = os.path.join(terrain_dir, world)
height_map = np.load(os.path.join(current_dir, 'biome_rivers_height.npy'))
height_map[height_map < 0] = 0
height_map = ((height_map - height_map.min()) / (1 - height_map.min()) * (sample_height - 1)).astype(np.int16)
semantic_map = cv2.imread(os.path.join(current_dir, 'biome_rivers_labels.png'), 0)
tree_map = cv2.imread(os.path.join(current_dir, 'biome_trees_dist.png'), 0)
total_size = height_map.shape[0]
crop_pos_x, crop_pos_y = np.random.randint(0, total_size - sample_size, size=2)
org_height_map = height_map[crop_pos_x: crop_pos_x + sample_size, crop_pos_y: crop_pos_y + sample_size].astype(int)
chunk_height_map = torch.from_numpy(org_height_map)[None, ...]
chunk_semantic_map = semantic_map[crop_pos_x: crop_pos_x + sample_size, crop_pos_y: crop_pos_y + sample_size]
chunk_trees_map = tree_map[crop_pos_x: crop_pos_x + sample_size, crop_pos_y: crop_pos_y + sample_size]
org_semantic_map = torch.from_numpy(chunk_semantic_map.copy())
org_semantic_map[chunk_trees_map != 255] = 10
chunk_semantic_map = biome2mclabels[torch.from_numpy(chunk_semantic_map)[None, ...].long().contiguous()]
voxel_t = voxel_t.scatter_(0, chunk_height_map, chunk_semantic_map)
for preproc_step in range(8):
voxel_t = voxel_t.scatter(0, torch.clip(chunk_height_map + preproc_step + 1, 0, sample_height - 1), chunk_semantic_map)
chunk_height_map = chunk_height_map + 8
chunk_height_map = chunk_height_map[0]
boundary_detect = 50
for biome_id in range(biome2mclabels.shape[0]):
tree_pos_mask = (chunk_trees_map == biome_id)
tree_pos_x = chunk_grid_x[tree_pos_mask]
tree_pos_y = chunk_grid_y[tree_pos_mask]
tree_pos_h = chunk_height_map[tree_pos_mask]
assert len(tree_pos_x) == len(tree_pos_y)
selected_trees = biome_trees_dict[biome_names[biome_id]]
if len(selected_trees) == 0:
continue
for idx in range(len(tree_pos_x)):
if tree_pos_x[idx] < boundary_detect or tree_pos_x[idx] > sample_size - boundary_detect or tree_pos_y[idx] < boundary_detect or tree_pos_y[idx] > sample_size - boundary_detect or tree_pos_h[idx] > sample_height - boundary_detect:
# FIXME: hack, to avoid out of index near the boundary
continue
tree_id = random.choice(selected_trees)
tmp = voxel_t[tree_pos_h[idx]: tree_pos_h[idx] + trees_models[tree_id].shape[0], tree_pos_x[idx]: tree_pos_x[idx] + trees_models[tree_id].shape[1], tree_pos_y[idx]: tree_pos_y[idx] + trees_models[tree_id].shape[2]]
tmp_mask = (tmp == 0)
try:
voxel_t[tree_pos_h[idx]: tree_pos_h[idx] + trees_models[tree_id].shape[0], tree_pos_x[idx]: tree_pos_x[idx] + trees_models[tree_id].shape[1], tree_pos_y[idx]: tree_pos_y[idx] + trees_models[tree_id].shape[2]][tmp_mask] = trees_models[tree_id][tmp_mask]
except:
print('height?', tree_pos_h[idx])
print(tmp_mask.shape)
print(tmp.shape)
print(trees_models[tree_id].shape)
print(voxel_t.shape)
print(tree_id)
raise NotImplementedError
trans_mat = torch.eye(4) # Transform voxel to world
# Generate heightmap for camera trajectory generation
m, h = torch.max((torch.flip(voxel_t, [0]) != 0).int(), dim=0, keepdim=False)
heightmap = voxel_t.shape[0] - 1 - h
heightmap[m == 0] = 0 # Special case when the whole vertical column is empty
voxel_t = voxel_t.numpy()
voxel_value = voxel_t[voxel_t != 0]
voxel_x, voxel_y, voxel_z = np.where(voxel_t != 0)
current_height_map = (chunk_height_map / (sample_height - 1))[None, None, ...]
current_semantic_map = F.one_hot(org_semantic_map.to(torch.int64)).to(torch.float).permute(2, 0, 1)[None, ...]
semantic_map = torch.argmax(current_semantic_map, dim=1)
print('semantic map after one hot and argmax', torch.unique(semantic_map, return_counts=True))
print(current_height_map.shape)
print(current_semantic_map.shape)
print(heightmap.shape)
print(voxel_t.shape)
print(voxel_value.shape)
print(voxel_x.shape)
print(voxel_y.shape)
print(voxel_z.shape)
print(voxel_z.dtype)
voxel_sparse = np.stack([voxel_x, voxel_y, voxel_z, voxel_value])
print(voxel_sparse.shape)
current_outdir = os.path.join(outdir, world)
os.makedirs(current_outdir, exist_ok=True)
np.save(os.path.join(current_outdir, 'voxel_sparse.npy'), voxel_sparse.astype(np.int16))
np.save(os.path.join(current_outdir, 'height_map.npy'), current_height_map.numpy())
np.save(os.path.join(current_outdir, 'semantic_map.npy'), current_semantic_map.numpy())
np.save(os.path.join(current_outdir, 'hmap_mc.npy'), heightmap.numpy())