Spaces:
Runtime error
Runtime error
File size: 10,138 Bytes
b72e09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import collections
import functools
import torch
from torch import nn
from torch.nn.utils import spectral_norm, weight_norm
from torch.nn.utils.spectral_norm import SpectralNorm, \
SpectralNormStateDictHook, SpectralNormLoadStateDictPreHook
from .conv import LinearBlock
class WeightDemodulation(nn.Module):
r"""Weight demodulation in
"Analyzing and Improving the Image Quality of StyleGAN", Karras et al.
Args:
conv (torch.nn.Modules): Convolutional layer.
cond_dims (int): The number of channels in the conditional input.
eps (float, optional, default=1e-8): a value added to the
denominator for numerical stability.
adaptive_bias (bool, optional, default=False): If ``True``, adaptively
predicts bias from the conditional input.
demod (bool, optional, default=False): If ``True``, performs
weight demodulation.
"""
def __init__(self, conv, cond_dims, eps=1e-8,
adaptive_bias=False, demod=True):
super().__init__()
self.conv = conv
self.adaptive_bias = adaptive_bias
if adaptive_bias:
self.conv.register_parameter('bias', None)
self.fc_beta = LinearBlock(cond_dims, self.conv.out_channels)
self.fc_gamma = LinearBlock(cond_dims, self.conv.in_channels)
self.eps = eps
self.demod = demod
self.conditional = True
def forward(self, x, y, **_kwargs):
r"""Weight demodulation forward"""
b, c, h, w = x.size()
self.conv.groups = b
gamma = self.fc_gamma(y)
gamma = gamma[:, None, :, None, None]
weight = self.conv.weight[None, :, :, :, :] * gamma
if self.demod:
d = torch.rsqrt(
(weight ** 2).sum(
dim=(2, 3, 4), keepdim=True) + self.eps)
weight = weight * d
x = x.reshape(1, -1, h, w)
_, _, *ws = weight.shape
weight = weight.reshape(b * self.conv.out_channels, *ws)
x = self.conv._conv_forward(x, weight)
x = x.reshape(-1, self.conv.out_channels, h, w)
if self.adaptive_bias:
x += self.fc_beta(y)[:, :, None, None]
return x
def weight_demod(
conv, cond_dims=256, eps=1e-8, adaptive_bias=False, demod=True):
r"""Weight demodulation."""
return WeightDemodulation(conv, cond_dims, eps, adaptive_bias, demod)
class ScaledLR(object):
def __init__(self, weight_name, bias_name):
self.weight_name = weight_name
self.bias_name = bias_name
def compute_weight(self, module):
weight = getattr(module, self.weight_name + '_ori')
return weight * module.weight_scale
def compute_bias(self, module):
bias = getattr(module, self.bias_name + '_ori')
if bias is not None:
return bias * module.bias_scale
else:
return None
@staticmethod
def apply(module, weight_name, bias_name, lr_mul, equalized):
assert weight_name == 'weight'
assert bias_name == 'bias'
fn = ScaledLR(weight_name, bias_name)
module.register_forward_pre_hook(fn)
if hasattr(module, bias_name):
# module.bias is a parameter (can be None).
bias = getattr(module, bias_name)
delattr(module, bias_name)
module.register_parameter(bias_name + '_ori', bias)
else:
# module.bias does not exist.
bias = None
setattr(module, bias_name + '_ori', bias)
if bias is not None:
setattr(module, bias_name, bias.data)
else:
setattr(module, bias_name, None)
module.register_buffer('bias_scale', torch.tensor(lr_mul))
if hasattr(module, weight_name + '_orig'):
# The module has been wrapped with spectral normalization.
# We only want to keep a single weight parameter.
weight = getattr(module, weight_name + '_orig')
delattr(module, weight_name + '_orig')
module.register_parameter(weight_name + '_ori', weight)
setattr(module, weight_name + '_orig', weight.data)
# Put this hook before the spectral norm hook.
module._forward_pre_hooks = collections.OrderedDict(
reversed(list(module._forward_pre_hooks.items()))
)
module.use_sn = True
else:
weight = getattr(module, weight_name)
delattr(module, weight_name)
module.register_parameter(weight_name + '_ori', weight)
setattr(module, weight_name, weight.data)
module.use_sn = False
# assert weight.dim() == 4 or weight.dim() == 2
if equalized:
fan_in = weight.data.size(1) * weight.data[0][0].numel()
# Theoretically, the gain should be sqrt(2) instead of 1.
# The official StyleGAN2 uses 1 for some reason.
module.register_buffer(
'weight_scale', torch.tensor(lr_mul * ((1 / fan_in) ** 0.5))
)
else:
module.register_buffer('weight_scale', torch.tensor(lr_mul))
module.lr_mul = module.weight_scale
module.base_lr_mul = lr_mul
return fn
def remove(self, module):
with torch.no_grad():
weight = self.compute_weight(module)
delattr(module, self.weight_name + '_ori')
if module.use_sn:
setattr(module, self.weight_name + '_orig', weight.detach())
else:
delattr(module, self.weight_name)
module.register_parameter(self.weight_name,
torch.nn.Parameter(weight.detach()))
with torch.no_grad():
bias = self.compute_bias(module)
delattr(module, self.bias_name)
delattr(module, self.bias_name + '_ori')
if bias is not None:
module.register_parameter(self.bias_name,
torch.nn.Parameter(bias.detach()))
else:
module.register_parameter(self.bias_name, None)
module.lr_mul = 1.0
module.base_lr_mul = 1.0
def __call__(self, module, input):
weight = self.compute_weight(module)
if module.use_sn:
# The following spectral norm hook will compute the SN of
# "module.weight_orig" and store the normalized weight in
# "module.weight".
setattr(module, self.weight_name + '_orig', weight)
else:
setattr(module, self.weight_name, weight)
bias = self.compute_bias(module)
setattr(module, self.bias_name, bias)
def remove_weight_norms(module, weight_name='weight', bias_name='bias'):
if hasattr(module, 'weight_ori') or hasattr(module, 'weight_orig'):
for k in list(module._forward_pre_hooks.keys()):
hook = module._forward_pre_hooks[k]
if (isinstance(hook, ScaledLR) or isinstance(hook, SpectralNorm)):
hook.remove(module)
del module._forward_pre_hooks[k]
for k, hook in module._state_dict_hooks.items():
if isinstance(hook, SpectralNormStateDictHook) and \
hook.fn.name == weight_name:
del module._state_dict_hooks[k]
break
for k, hook in module._load_state_dict_pre_hooks.items():
if isinstance(hook, SpectralNormLoadStateDictPreHook) and \
hook.fn.name == weight_name:
del module._load_state_dict_pre_hooks[k]
break
return module
def remove_equalized_lr(module, weight_name='weight', bias_name='bias'):
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, ScaledLR) and hook.weight_name == weight_name:
hook.remove(module)
del module._forward_pre_hooks[k]
break
else:
raise ValueError("Equalized learning rate not found")
return module
def scaled_lr(
module, weight_name='weight', bias_name='bias', lr_mul=1.,
equalized=False,
):
ScaledLR.apply(module, weight_name, bias_name, lr_mul, equalized)
return module
def get_weight_norm_layer(norm_type, **norm_params):
r"""Return weight normalization.
Args:
norm_type (str):
Type of weight normalization.
``'none'``, ``'spectral'``, ``'weight'``
or ``'weight_demod'``.
norm_params: Arbitrary keyword arguments that will be used to
initialize the weight normalization.
"""
if norm_type == 'none' or norm_type == '': # no normalization
return lambda x: x
elif norm_type == 'spectral': # spectral normalization
return functools.partial(spectral_norm, **norm_params)
elif norm_type == 'weight': # weight normalization
return functools.partial(weight_norm, **norm_params)
elif norm_type == 'weight_demod': # weight demodulation
return functools.partial(weight_demod, **norm_params)
elif norm_type == 'equalized_lr': # equalized learning rate
return functools.partial(scaled_lr, equalized=True, **norm_params)
elif norm_type == 'scaled_lr': # equalized learning rate
return functools.partial(scaled_lr, **norm_params)
elif norm_type == 'equalized_lr_spectral':
lr_mul = norm_params.pop('lr_mul', 1.0)
return lambda x: functools.partial(
scaled_lr, equalized=True, lr_mul=lr_mul)(
functools.partial(spectral_norm, **norm_params)(x)
)
elif norm_type == 'scaled_lr_spectral':
lr_mul = norm_params.pop('lr_mul', 1.0)
return lambda x: functools.partial(
scaled_lr, lr_mul=lr_mul)(
functools.partial(spectral_norm, **norm_params)(x)
)
else:
raise ValueError(
'Weight norm layer %s is not recognized' % norm_type)
|