Spaces:
Runtime error
Runtime error
File size: 43,084 Bytes
b72e09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
# Using Hashgrid as backbone representation
import os
import cv2
import imageio
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import imaginaire.model_utils.gancraft.camctl as camctl
import imaginaire.model_utils.gancraft.mc_utils as mc_utils
import imaginaire.model_utils.gancraft.voxlib as voxlib
from imaginaire.model_utils.pcg_gen import PCGVoxelGenerator, PCGCache
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.generators.gancraft_base import Base3DGenerator
from encoding import get_encoder
from imaginaire.model_utils.layers import LightningMLP, ConditionalHashGrid
class Generator(Base3DGenerator):
r"""SceneDreamer generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
"""
def __init__(self, gen_cfg, data_cfg):
super(Generator, self).__init__(gen_cfg, data_cfg)
print('SceneDreamer[Hash] on ALL Scenes generator initialization.')
# here should be a list of height maps and semantic maps
if gen_cfg.pcg_cache:
print('[Generator] Loading PCG dataset: ', gen_cfg.pcg_dataset_path)
self.voxel = PCGCache(gen_cfg.pcg_dataset_path)
print('[Generator] Loaded PCG dataset.')
else:
self.voxel = PCGVoxelGenerator(gen_cfg.scene_size)
self.blk_feats = None
# Minecraft -> SPADE label translator.
self.label_trans = mc_utils.MCLabelTranslator()
self.num_reduced_labels = self.label_trans.get_num_reduced_lbls()
self.reduced_label_set = getattr(gen_cfg, 'reduced_label_set', False)
self.use_label_smooth = getattr(gen_cfg, 'use_label_smooth', False)
self.use_label_smooth_real = getattr(gen_cfg, 'use_label_smooth_real', self.use_label_smooth)
self.use_label_smooth_pgt = getattr(gen_cfg, 'use_label_smooth_pgt', False)
self.label_smooth_dia = getattr(gen_cfg, 'label_smooth_dia', 11)
# Load MLP model.
self.hash_encoder, self.hash_in_dim = get_encoder(encoding='hashgrid', input_dim=5, desired_resolution=2048 * 1, level_dim=8)
self.render_net = LightningMLP(self.hash_in_dim, viewdir_dim=self.input_dim_viewdir, style_dim=self.interm_style_dims, mask_dim=self.num_reduced_labels, out_channels_s=1, out_channels_c=self.final_feat_dim, **self.mlp_model_kwargs)
print(self.hash_encoder)
self.world_encoder = ConditionalHashGrid()
# Camera sampler.
self.camera_sampler_type = getattr(gen_cfg, 'camera_sampler_type', "random")
assert self.camera_sampler_type in ['random', 'traditional']
self.camera_min_entropy = getattr(gen_cfg, 'camera_min_entropy', -1)
self.camera_rej_avg_depth = getattr(gen_cfg, 'camera_rej_avg_depth', -1)
self.cam_res = gen_cfg.cam_res
self.crop_size = gen_cfg.crop_size
print('Done with the SceneDreamer initialization.')
def custom_init(self):
r"""Weight initialization."""
def init_func(m):
if hasattr(m, 'weight'):
try:
nn.init.kaiming_normal_(m.weight.data, a=0.2, nonlinearity='leaky_relu')
except:
print(m.name)
m.weight.data *= 0.5
if hasattr(m, 'bias') and m.bias is not None:
m.bias.data.fill_(0.0)
self.apply(init_func)
def _get_batch(self, batch_size, device):
r"""Sample camera poses and perform ray-voxel intersection.
Args:
batch_size (int): Expected batch size of the current batch
device (torch.device): Device on which the tensors should be stored
"""
with torch.no_grad():
self.voxel.sample_world(device)
voxel_id_batch = []
depth2_batch = []
raydirs_batch = []
cam_ori_t_batch = []
for b in range(batch_size):
while True: # Rejection sampling.
# Sample camera pose.
if self.camera_sampler_type == 'random':
cam_res = self.cam_res
cam_ori_t, cam_dir_t, cam_up_t = camctl.rand_camera_pose_thridperson2(self.voxel)
# ~24mm fov horizontal.
cam_f = 0.5/np.tan(np.deg2rad(73/2) * (np.random.rand(1)*0.5+0.5)) * (cam_res[1]-1)
cam_c = [(cam_res[0]-1)/2, (cam_res[1]-1)/2]
cam_res_crop = [self.crop_size[0] + self.pad, self.crop_size[1] + self.pad]
cam_c = mc_utils.rand_crop(cam_c, cam_res, cam_res_crop)
elif self.camera_sampler_type == 'traditional':
cam_res = self.cam_res
cam_c = [(cam_res[0]-1)/2, (cam_res[1]-1)/2]
dice = torch.rand(1).item()
if dice > 0.5:
cam_ori_t, cam_dir_t, cam_up_t, cam_f = \
camctl.rand_camera_pose_tour(self.voxel)
cam_f = cam_f * (cam_res[1]-1)
else:
cam_ori_t, cam_dir_t, cam_up_t = \
camctl.rand_camera_pose_thridperson2(self.voxel)
# ~24mm fov horizontal.
cam_f = 0.5 / np.tan(np.deg2rad(73/2) * (np.random.rand(1)*0.5+0.5)) * (cam_res[1]-1)
cam_res_crop = [self.crop_size[0] + self.pad, self.crop_size[1] + self.pad]
cam_c = mc_utils.rand_crop(cam_c, cam_res, cam_res_crop)
else:
raise NotImplementedError(
'Unknown self.camera_sampler_type: {}'.format(self.camera_sampler_type))
# Run ray-voxel intersection test
voxel_id, depth2, raydirs = voxlib.ray_voxel_intersection_perspective(
self.voxel.voxel_t, cam_ori_t, cam_dir_t, cam_up_t, cam_f, cam_c, cam_res_crop,
self.num_blocks_early_stop)
if self.camera_rej_avg_depth > 0:
depth_map = depth2[0, :, :, 0, :]
avg_depth = torch.mean(depth_map[~torch.isnan(depth_map)])
if avg_depth < self.camera_rej_avg_depth:
continue
# Reject low entropy.
if self.camera_min_entropy > 0:
# Check entropy.
maskcnt = torch.bincount(
torch.flatten(voxel_id[:, :, 0, 0]), weights=None, minlength=680).float() / \
(voxel_id.size(0)*voxel_id.size(1))
maskentropy = -torch.sum(maskcnt * torch.log(maskcnt+1e-10))
if maskentropy < self.camera_min_entropy:
continue
break
voxel_id_batch.append(voxel_id)
depth2_batch.append(depth2)
raydirs_batch.append(raydirs)
cam_ori_t_batch.append(cam_ori_t)
voxel_id = torch.stack(voxel_id_batch, dim=0)
depth2 = torch.stack(depth2_batch, dim=0)
raydirs = torch.stack(raydirs_batch, dim=0)
cam_ori_t = torch.stack(cam_ori_t_batch, dim=0).to(device)
cam_poses = None
return voxel_id, depth2, raydirs, cam_ori_t, cam_poses
def get_pseudo_gt(self, pseudo_gen, voxel_id, z=None, style_img=None, resize_512=True, deterministic=False):
r"""Evaluating img2img network to obtain pseudo-ground truth images.
Args:
pseudo_gen (callable): Function converting mask to image using img2img network.
voxel_id (N x img_dims[0] x img_dims[1] x max_samples x 1 tensor): IDs of intersected tensors along
each ray.
z (N x C tensor): Optional style code passed to pseudo_gen.
style_img (N x 3 x H x W tensor): Optional style image passed to pseudo_gen.
resize_512 (bool): If True, evaluate pseudo_gen at 512x512 regardless of input resolution.
deterministic (bool): If True, disable stochastic label mapping.
"""
with torch.no_grad():
mc_mask = voxel_id[:, :, :, 0, :].permute(0, 3, 1, 2).long().contiguous()
coco_mask = self.label_trans.mc2coco(mc_mask) - 1
coco_mask[coco_mask < 0] = 183
if not deterministic:
# Stochastic mapping
dice = torch.rand(1).item()
if dice > 0.5 and dice < 0.9:
coco_mask[coco_mask == self.label_trans.gglbl2ggid('sky')] = self.label_trans.gglbl2ggid('clouds')
elif dice >= 0.9:
coco_mask[coco_mask == self.label_trans.gglbl2ggid('sky')] = self.label_trans.gglbl2ggid('fog')
dice = torch.rand(1).item()
if dice > 0.33 and dice < 0.66:
coco_mask[coco_mask == self.label_trans.gglbl2ggid('water')] = self.label_trans.gglbl2ggid('sea')
elif dice >= 0.66:
coco_mask[coco_mask == self.label_trans.gglbl2ggid('water')] = self.label_trans.gglbl2ggid('river')
fake_masks = torch.zeros([coco_mask.size(0), 185, coco_mask.size(2), coco_mask.size(3)],
dtype=torch.half, device=voxel_id.device)
fake_masks.scatter_(1, coco_mask, 1.0)
if self.use_label_smooth_pgt:
fake_masks = mc_utils.segmask_smooth(fake_masks, kernel_size=self.label_smooth_dia)
if self.pad > 0:
fake_masks = fake_masks[:, :, self.pad//2:-self.pad//2, self.pad//2:-self.pad//2]
# Generate pseudo GT using GauGAN.
if resize_512:
fake_masks_512 = F.interpolate(fake_masks, size=[512, 512], mode='nearest')
else:
fake_masks_512 = fake_masks
pseudo_real_img = pseudo_gen(fake_masks_512, z=z, style_img=style_img)
# NaN Inf Guard. NaN can occure on Volta GPUs.
nan_mask = torch.isnan(pseudo_real_img)
inf_mask = torch.isinf(pseudo_real_img)
pseudo_real_img[nan_mask | inf_mask] = 0.0
if resize_512:
pseudo_real_img = F.interpolate(
pseudo_real_img, size=[fake_masks.size(2), fake_masks.size(3)], mode='area')
pseudo_real_img = torch.clamp(pseudo_real_img, -1, 1)
return pseudo_real_img, fake_masks
def sample_camera(self, data, pseudo_gen):
r"""Sample camera randomly and precompute everything used by both Gen and Dis.
Args:
data (dict):
images (N x 3 x H x W tensor) : Real images
label (N x C2 x H x W tensor) : Segmentation map
pseudo_gen (callable): Function converting mask to image using img2img network.
Returns:
ret (dict):
voxel_id (N x H x W x max_samples x 1 tensor): IDs of intersected tensors along each ray.
depth2 (N x 2 x H x W x max_samples x 1 tensor): Depths of entrance and exit points for each ray-voxel
intersection.
raydirs (N x H x W x 1 x 3 tensor): The direction of each ray.
cam_ori_t (N x 3 tensor): Camera origins.
pseudo_real_img (N x 3 x H x W tensor): Pseudo-ground truth image.
real_masks (N x C3 x H x W tensor): One-hot segmentation map for real images, with translated labels.
fake_masks (N x C3 x H x W tensor): One-hot segmentation map for sampled camera views.
"""
device = torch.device('cuda')
batch_size = data['images'].size(0)
# ================ Assemble a batch ==================
# Requires: voxel_id, depth2, raydirs, cam_ori_t.
voxel_id, depth2, raydirs, cam_ori_t, _ = self._get_batch(batch_size, device)
ret = {'voxel_id': voxel_id, 'depth2': depth2, 'raydirs': raydirs, 'cam_ori_t': cam_ori_t}
if pseudo_gen is not None:
pseudo_real_img, _ = self.get_pseudo_gt(pseudo_gen, voxel_id)
ret['pseudo_real_img'] = pseudo_real_img.float()
# =============== Mask translation ================
real_masks = data['label']
if self.reduced_label_set:
# Translate fake mask (directly from mcid).
# convert unrecognized labels to 'dirt'.
# N C H W [1 1 80 80]
reduce_fake_mask = self.label_trans.mc2reduced(
voxel_id[:, :, :, 0, :].permute(0, 3, 1, 2).long().contiguous()
, ign2dirt=True)
reduce_fake_mask_onehot = torch.zeros([
reduce_fake_mask.size(0), self.num_reduced_labels, reduce_fake_mask.size(2), reduce_fake_mask.size(3)],
dtype=torch.float, device=device)
reduce_fake_mask_onehot.scatter_(1, reduce_fake_mask, 1.0)
fake_masks = reduce_fake_mask_onehot
if self.pad != 0:
fake_masks = fake_masks[:, :, self.pad//2:-self.pad//2, self.pad//2:-self.pad//2]
# Translate real mask (data['label']), which is onehot.
real_masks_idx = torch.argmax(real_masks, dim=1, keepdim=True)
real_masks_idx[real_masks_idx > 182] = 182
reduced_real_mask = self.label_trans.coco2reduced(real_masks_idx)
reduced_real_mask_onehot = torch.zeros([
reduced_real_mask.size(0), self.num_reduced_labels, reduced_real_mask.size(2),
reduced_real_mask.size(3)], dtype=torch.float, device=device)
reduced_real_mask_onehot.scatter_(1, reduced_real_mask, 1.0)
real_masks = reduced_real_mask_onehot
# Mask smoothing.
if self.use_label_smooth:
fake_masks = mc_utils.segmask_smooth(fake_masks, kernel_size=self.label_smooth_dia)
if self.use_label_smooth_real:
real_masks = mc_utils.segmask_smooth(real_masks, kernel_size=self.label_smooth_dia)
ret['real_masks'] = real_masks
ret['fake_masks'] = fake_masks
return ret
def _forward_perpix_sub(self, blk_feats, worldcoord2, raydirs_in, z, mc_masks_onehot=None, global_enc=None):
r"""Per-pixel rendering forwarding
Args:
blk_feats: Deprecated
worldcoord2 (N x H x W x L x 3 tensor): 3D world coordinates of sampled points. L is number of samples; N is batch size, always 1.
raydirs_in (N x H x W x 1 x C2 tensor or None): ray direction embeddings.
z (N x C3 tensor): Intermediate style vectors.
mc_masks_onehot (N x H x W x L x C4): One-hot segmentation maps.
Returns:
net_out_s (N x H x W x L x 1 tensor): Opacities.
net_out_c (N x H x W x L x C5 tensor): Color embeddings.
"""
_x, _y, _z = self.voxel.voxel_t.shape
delimeter = torch.Tensor([_x, _y, _z]).to(worldcoord2)
normalized_coord = worldcoord2 / delimeter * 2 - 1
global_enc = global_enc[:, None, None, None, :].repeat(1, normalized_coord.shape[1], normalized_coord.shape[2], normalized_coord.shape[3], 1)
normalized_coord = torch.cat([normalized_coord, global_enc], dim=-1)
feature_in = self.hash_encoder(normalized_coord)
net_out_s, net_out_c = self.render_net(feature_in, raydirs_in, z, mc_masks_onehot)
if self.raw_noise_std > 0.:
noise = torch.randn_like(net_out_s) * self.raw_noise_std
net_out_s = net_out_s + noise
return net_out_s, net_out_c
def _forward_perpix(self, blk_feats, voxel_id, depth2, raydirs, cam_ori_t, z, global_enc):
r"""Sample points along rays, forwarding the per-point MLP and aggregate pixel features
Args:
blk_feats (K x C1 tensor): Deprecated
voxel_id (N x H x W x M x 1 tensor): Voxel ids from ray-voxel intersection test. M: num intersected voxels, why always 6?
depth2 (N x 2 x H x W x M x 1 tensor): Depths of entrance and exit points for each ray-voxel intersection.
raydirs (N x H x W x 1 x 3 tensor): The direction of each ray.
cam_ori_t (N x 3 tensor): Camera origins.
z (N x C3 tensor): Intermediate style vectors.
"""
# Generate sky_mask; PE transform on ray direction.
with torch.no_grad():
raydirs_in = raydirs.expand(-1, -1, -1, 1, -1).contiguous()
if self.pe_params[2] == 0 and self.pe_params[3] is True:
raydirs_in = raydirs_in
elif self.pe_params[2] == 0 and self.pe_params[3] is False: # Not using raydir at all
raydirs_in = None
else:
raydirs_in = voxlib.positional_encoding(raydirs_in, self.pe_params[2], -1, self.pe_params[3])
# sky_mask: when True, ray finally hits sky
sky_mask = voxel_id[:, :, :, [-1], :] == 0
# sky_only_mask: when True, ray hits nothing but sky
sky_only_mask = voxel_id[:, :, :, [0], :] == 0
with torch.no_grad():
# Random sample points along the ray
num_samples = self.num_samples + 1
if self.sample_use_box_boundaries:
num_samples = self.num_samples - self.num_blocks_early_stop
# 10 samples per ray + 4 intersections - 2
rand_depth, new_dists, new_idx = mc_utils.sample_depth_batched(
depth2, num_samples, deterministic=self.coarse_deterministic_sampling,
use_box_boundaries=self.sample_use_box_boundaries, sample_depth=self.sample_depth)
nan_mask = torch.isnan(rand_depth)
inf_mask = torch.isinf(rand_depth)
rand_depth[nan_mask | inf_mask] = 0.0
worldcoord2 = raydirs * rand_depth + cam_ori_t[:, None, None, None, :]
# Generate per-sample segmentation label
voxel_id_reduced = self.label_trans.mc2reduced(voxel_id, ign2dirt=True)
mc_masks = torch.gather(voxel_id_reduced, -2, new_idx) # B 256 256 N 1
mc_masks = mc_masks.long()
mc_masks_onehot = torch.zeros([mc_masks.size(0), mc_masks.size(1), mc_masks.size(
2), mc_masks.size(3), self.num_reduced_labels], dtype=torch.float, device=voxel_id.device)
# mc_masks_onehot: [B H W Nlayer 680]
mc_masks_onehot.scatter_(-1, mc_masks, 1.0)
net_out_s, net_out_c = self._forward_perpix_sub(blk_feats, worldcoord2, raydirs_in, z, mc_masks_onehot, global_enc)
# Handle sky
sky_raydirs_in = raydirs.expand(-1, -1, -1, 1, -1).contiguous()
sky_raydirs_in = voxlib.positional_encoding(sky_raydirs_in, self.pe_params_sky[0], -1, self.pe_params_sky[1])
skynet_out_c = self.sky_net(sky_raydirs_in, z)
# Blending
weights = mc_utils.volum_rendering_relu(net_out_s, new_dists * self.dists_scale, dim=-2)
# If a ray exclusively hits the sky (no intersection with the voxels), set its weight to zero.
weights = weights * torch.logical_not(sky_only_mask).float()
total_weights_raw = torch.sum(weights, dim=-2, keepdim=True) # 256 256 1 1
total_weights = total_weights_raw
is_gnd = worldcoord2[..., [0]] <= 1.0 # Y X Z, [256, 256, 4, 3], nan < 1.0 == False
is_gnd = is_gnd.any(dim=-2, keepdim=True)
nosky_mask = torch.logical_or(torch.logical_not(sky_mask), is_gnd)
nosky_mask = nosky_mask.float()
# Avoid sky leakage
sky_weight = 1.0-total_weights
if self.keep_sky_out:
# keep_sky_out_avgpool overrides sky_replace_color
if self.sky_replace_color is None or self.keep_sky_out_avgpool:
if self.keep_sky_out_avgpool:
if hasattr(self, 'sky_avg'):
sky_avg = self.sky_avg
else:
if self.sky_global_avgpool:
sky_avg = torch.mean(skynet_out_c, dim=[1, 2], keepdim=True)
else:
skynet_out_c_nchw = skynet_out_c.permute(0, 4, 1, 2, 3).squeeze(-1).contiguous()
sky_avg = F.avg_pool2d(skynet_out_c_nchw, 31, stride=1, padding=15, count_include_pad=False)
sky_avg = sky_avg.permute(0, 2, 3, 1).unsqueeze(-2).contiguous()
# print(sky_avg.shape)
skynet_out_c = skynet_out_c * (1.0-nosky_mask) + sky_avg*(nosky_mask)
else:
sky_weight = sky_weight * (1.0-nosky_mask)
else:
skynet_out_c = skynet_out_c * (1.0-nosky_mask) + self.sky_replace_color*(nosky_mask)
if self.clip_feat_map is True: # intermediate feature before blending & CNN
rgbs = torch.clamp(net_out_c, -1, 1) + 1
rgbs_sky = torch.clamp(skynet_out_c, -1, 1) + 1
net_out = torch.sum(weights*rgbs, dim=-2, keepdim=True) + sky_weight * \
rgbs_sky # 576, 768, 4, 3 -> 576, 768, 3
net_out = net_out.squeeze(-2)
net_out = net_out - 1
elif self.clip_feat_map is False:
rgbs = net_out_c
rgbs_sky = skynet_out_c
net_out = torch.sum(weights*rgbs, dim=-2, keepdim=True) + sky_weight * \
rgbs_sky # 576, 768, 4, 3 -> 576, 768, 3
net_out = net_out.squeeze(-2)
elif self.clip_feat_map == 'tanh':
rgbs = torch.tanh(net_out_c)
rgbs_sky = torch.tanh(skynet_out_c)
net_out = torch.sum(weights*rgbs, dim=-2, keepdim=True) + sky_weight * \
rgbs_sky # 576, 768, 4, 3 -> 576, 768, 3
net_out = net_out.squeeze(-2)
else:
raise NotImplementedError
return net_out, new_dists, weights, total_weights_raw, rand_depth, net_out_s, net_out_c, skynet_out_c, \
nosky_mask, sky_mask, sky_only_mask, new_idx
def forward(self, data, random_style=False):
r"""SceneDreamer forward.
"""
device = torch.device('cuda')
batch_size = data['images'].size(0)
# Requires: voxel_id, depth2, raydirs, cam_ori_t.
voxel_id, depth2, raydirs, cam_ori_t = data['voxel_id'], data['depth2'], data['raydirs'], data['cam_ori_t']
if 'pseudo_real_img' in data:
pseudo_real_img = data['pseudo_real_img']
global_enc = self.world_encoder(self.voxel.current_height_map, self.voxel.current_semantic_map)
z, mu, logvar = None, None, None
if random_style:
if self.style_dims > 0:
z = torch.randn(batch_size, self.style_dims, dtype=torch.float32, device=device)
else:
if self.style_encoder is None:
# ================ Get Style Code =================
if self.style_dims > 0:
z = torch.randn(batch_size, self.style_dims, dtype=torch.float32, device=device)
else:
mu, logvar, z = self.style_encoder(pseudo_real_img)
# ================ Network Forward ================
# Forward StyleNet
if self.style_net is not None:
z = self.style_net(z)
# Forward per-pixel net.
net_out, new_dists, weights, total_weights_raw, rand_depth, net_out_s, net_out_c, skynet_out_c, nosky_mask, \
sky_mask, sky_only_mask, new_idx = self._forward_perpix(
self.blk_feats, voxel_id, depth2, raydirs, cam_ori_t, z, global_enc)
# Forward global net.
fake_images, fake_images_raw = self._forward_global(net_out, z)
if self.pad != 0:
fake_images = fake_images[:, :, self.pad//2:-self.pad//2, self.pad//2:-self.pad//2]
# =============== Arrange Return Values ================
output = {}
output['fake_images'] = fake_images
output['mu'] = mu
output['logvar'] = logvar
return output
def inference_givenstyle(self, style,
output_dir,
camera_mode,
style_img_path=None,
seed=1,
pad=30,
num_samples=40,
num_blocks_early_stop=6,
sample_depth=3,
tile_size=128,
resolution_hw=[540, 960],
cam_ang=72,
cam_maxstep=10):
r"""Compute result images according to the provided camera trajectory and save the results in the specified
folder. The full image is evaluated in multiple tiles to save memory.
Args:
output_dir (str): Where should the results be stored.
camera_mode (int): Which camera trajectory to use.
style_img_path (str): Path to the style-conditioning image.
seed (int): Random seed (controls style when style_image_path is not specified).
pad (int): Pixels to remove from the image tiles before stitching. Should be equal or larger than the
receptive field of the CNN to avoid border artifact.
num_samples (int): Number of samples per ray (different from training).
num_blocks_early_stop (int): Max number of intersected boxes per ray before stopping
(different from training).
sample_depth (float): Max distance traveled through boxes before stopping (different from training).
tile_size (int): Max size of a tile in pixels.
resolution_hw (list [H, W]): Resolution of the output image.
cam_ang (float): Horizontal FOV of the camera (may be adjusted by the camera controller).
cam_maxstep (int): Number of frames sampled from the camera trajectory.
"""
def write_img(path, img, rgb_input=False):
img = ((img*0.5+0.5)*255).detach().cpu().numpy().astype(np.uint8)
img = img[0].transpose(1, 2, 0)
if rgb_input:
img = img[..., [2, 1, 0]]
cv2.imwrite(path, img, [cv2.IMWRITE_PNG_COMPRESSION, 4])
return img[..., ::-1]
def read_img(path):
img = cv2.imread(path).astype(np.float32)[..., [2, 1, 0]].transpose(2, 0, 1) / 255
img = img * 2 - 1
img = torch.from_numpy(img)
print('Saving to', output_dir)
# Use provided random seed.
device = torch.device('cuda')
global_enc = self.world_encoder(self.voxel.current_height_map, self.voxel.current_semantic_map)
biome_colors = torch.Tensor([
[255, 255, 178],
[184, 200, 98],
[188, 161, 53],
[190, 255, 242],
[106, 144, 38],
[33, 77, 41],
[86, 179, 106],
[34, 61, 53],
[35, 114, 94],
[0, 0, 255],
[0, 255, 0],
]).to(device) / 255 * 2 - 1
semantic_map = torch.argmax(self.voxel.current_semantic_map, dim=1)
self.pad = pad
self.num_samples = num_samples
self.num_blocks_early_stop = num_blocks_early_stop
self.sample_depth = sample_depth
self.coarse_deterministic_sampling = True
self.crop_size = resolution_hw
self.cam_res = [self.crop_size[0]+self.pad, self.crop_size[1]+self.pad]
self.use_label_smooth_pgt = False
# Make output dirs.
output_dir = os.path.join(output_dir, 'rgb_render')
os.makedirs(output_dir, exist_ok=True)
fout = imageio.get_writer(output_dir + '.mp4', fps=10)
write_img(os.path.join(output_dir, 'semantic_map.png'), biome_colors[semantic_map].permute(0, 3, 1, 2), rgb_input=True)
write_img(os.path.join(output_dir, 'height_map.png'), self.voxel.current_height_map)
np.save(os.path.join(output_dir, 'style.npy'), style.detach().cpu().numpy())
evalcamctl = camctl.EvalCameraController(
self.voxel, maxstep=cam_maxstep, pattern=camera_mode, cam_ang=cam_ang,
smooth_decay_multiplier=150/cam_maxstep)
# Get output style.
z = self.style_net(style)
# Generate required output images.
for id, (cam_ori_t, cam_dir_t, cam_up_t, cam_f) in enumerate(evalcamctl):
print('Rendering frame', id)
cam_f = cam_f * (self.crop_size[1]-1) # So that the view is not depending on the padding
cam_c = [(self.cam_res[0]-1)/2, (self.cam_res[1]-1)/2]
voxel_id, depth2, raydirs = voxlib.ray_voxel_intersection_perspective(
self.voxel.voxel_t, cam_ori_t, cam_dir_t, cam_up_t, cam_f, cam_c, self.cam_res,
self.num_blocks_early_stop)
voxel_id = voxel_id.unsqueeze(0)
depth2 = depth2.unsqueeze(0)
raydirs = raydirs.unsqueeze(0)
cam_ori_t = cam_ori_t.unsqueeze(0).to(device)
voxel_id_all = voxel_id
depth2_all = depth2
raydirs_all = raydirs
# Evaluate sky in advance to get a consistent sky in the semi-transparent region.
if self.sky_global_avgpool:
sky_raydirs_in = raydirs.expand(-1, -1, -1, 1, -1).contiguous()
sky_raydirs_in = voxlib.positional_encoding(
sky_raydirs_in, self.pe_params_sky[0], -1, self.pe_params_sky[1])
skynet_out_c = self.sky_net(sky_raydirs_in, z)
sky_avg = torch.mean(skynet_out_c, dim=[1, 2], keepdim=True)
self.sky_avg = sky_avg
num_strips_h = (self.cam_res[0]-self.pad+tile_size-1)//tile_size
num_strips_w = (self.cam_res[1]-self.pad+tile_size-1)//tile_size
fake_images_chunks_v = []
# For each horizontal strip.
for strip_id_h in range(num_strips_h):
strip_begin_h = strip_id_h * tile_size
strip_end_h = np.minimum(strip_id_h * tile_size + tile_size + self.pad, self.cam_res[0])
# For each vertical strip.
fake_images_chunks_h = []
for strip_id_w in range(num_strips_w):
strip_begin_w = strip_id_w * tile_size
strip_end_w = np.minimum(strip_id_w * tile_size + tile_size + self.pad, self.cam_res[1])
voxel_id = voxel_id_all[:, strip_begin_h:strip_end_h, strip_begin_w:strip_end_w, :, :]
depth2 = depth2_all[:, :, strip_begin_h:strip_end_h, strip_begin_w:strip_end_w, :, :]
raydirs = raydirs_all[:, strip_begin_h:strip_end_h, strip_begin_w:strip_end_w, :, :]
net_out, new_dists, weights, total_weights_raw, rand_depth, net_out_s, net_out_c, skynet_out_c, \
nosky_mask, sky_mask, sky_only_mask, new_idx = self._forward_perpix(
self.blk_feats, voxel_id, depth2, raydirs, cam_ori_t, z, global_enc)
fake_images, _ = self._forward_global(net_out, z)
if self.pad != 0:
fake_images = fake_images[:, :, self.pad//2:-self.pad//2, self.pad//2:-self.pad//2]
fake_images_chunks_h.append(fake_images)
fake_images_h = torch.cat(fake_images_chunks_h, dim=-1)
fake_images_chunks_v.append(fake_images_h)
fake_images = torch.cat(fake_images_chunks_v, dim=-2)
rgb = write_img(os.path.join(output_dir,
'{:05d}.png'.format(id)), fake_images, rgb_input=True)
fout.append_data(rgb)
fout.close()
def inference_givenstyle_depth(self, style,
output_dir,
camera_mode,
style_img_path=None,
seed=1,
pad=30,
num_samples=40,
num_blocks_early_stop=6,
sample_depth=3,
tile_size=128,
resolution_hw=[540, 960],
cam_ang=72,
cam_maxstep=10):
r"""Compute result images according to the provided camera trajectory and save the results in the specified
folder. The full image is evaluated in multiple tiles to save memory.
Args:
output_dir (str): Where should the results be stored.
camera_mode (int): Which camera trajectory to use.
style_img_path (str): Path to the style-conditioning image.
seed (int): Random seed (controls style when style_image_path is not specified).
pad (int): Pixels to remove from the image tiles before stitching. Should be equal or larger than the
receptive field of the CNN to avoid border artifact.
num_samples (int): Number of samples per ray (different from training).
num_blocks_early_stop (int): Max number of intersected boxes per ray before stopping
(different from training).
sample_depth (float): Max distance traveled through boxes before stopping (different from training).
tile_size (int): Max size of a tile in pixels.
resolution_hw (list [H, W]): Resolution of the output image.
cam_ang (float): Horizontal FOV of the camera (may be adjusted by the camera controller).
cam_maxstep (int): Number of frames sampled from the camera trajectory.
"""
def write_img(path, img, rgb_input=False):
img = ((img*0.5+0.5)*255).detach().cpu().numpy().astype(np.uint8)
img = img[0].transpose(1, 2, 0)
if rgb_input:
img = img[..., [2, 1, 0]]
cv2.imwrite(path, img, [cv2.IMWRITE_PNG_COMPRESSION, 4])
return img[..., ::-1]
def read_img(path):
img = cv2.imread(path).astype(np.float32)[..., [2, 1, 0]].transpose(2, 0, 1) / 255
img = img * 2 - 1
img = torch.from_numpy(img)
print('Saving to', output_dir)
# Use provided random seed.
device = torch.device('cuda')
global_enc = self.world_encoder(self.voxel.current_height_map, self.voxel.current_semantic_map)
biome_colors = torch.Tensor([
[255, 255, 178],
[184, 200, 98],
[188, 161, 53],
[190, 255, 242],
[106, 144, 38],
[33, 77, 41],
[86, 179, 106],
[34, 61, 53],
[35, 114, 94],
[0, 0, 255],
[0, 255, 0],
]) / 255 * 2 - 1
print(self.voxel.current_height_map[0].shape)
semantic_map = torch.argmax(self.voxel.current_semantic_map, dim=1)
print(torch.unique(semantic_map, return_counts=True))
print(semantic_map.min())
self.pad = pad
self.num_samples = num_samples
self.num_blocks_early_stop = num_blocks_early_stop
self.sample_depth = sample_depth
self.coarse_deterministic_sampling = True
self.crop_size = resolution_hw
self.cam_res = [self.crop_size[0]+self.pad, self.crop_size[1]+self.pad]
self.use_label_smooth_pgt = False
# Make output dirs.
gancraft_outputs_dir = os.path.join(output_dir, 'gancraft_outputs')
os.makedirs(gancraft_outputs_dir, exist_ok=True)
gancraft_depth_outputs_dir = os.path.join(output_dir, 'depth')
os.makedirs(gancraft_depth_outputs_dir, exist_ok=True)
vis_masks_dir = os.path.join(output_dir, 'vis_masks')
os.makedirs(vis_masks_dir, exist_ok=True)
fout = imageio.get_writer(gancraft_outputs_dir + '.mp4', fps=10)
fout_cat = imageio.get_writer(gancraft_outputs_dir + '-vis_masks.mp4', fps=10)
write_img(os.path.join(output_dir, 'semantic_map.png'), biome_colors[semantic_map].permute(0, 3, 1, 2), rgb_input=True)
write_img(os.path.join(output_dir, 'heightmap.png'), self.voxel.current_height_map)
evalcamctl = camctl.EvalCameraController(
self.voxel, maxstep=cam_maxstep, pattern=camera_mode, cam_ang=cam_ang,
smooth_decay_multiplier=150/cam_maxstep)
# import pickle
# with open(os.path.join(output_dir,'camera.pkl'), 'wb') as f:
# pickle.dump(evalcamctl, f)
# Get output style.
z = self.style_net(style)
# Generate required output images.
for id, (cam_ori_t, cam_dir_t, cam_up_t, cam_f) in enumerate(evalcamctl):
# print('Rendering frame', id)
cam_f = cam_f * (self.crop_size[1]-1) # So that the view is not depending on the padding
cam_c = [(self.cam_res[0]-1)/2, (self.cam_res[1]-1)/2]
voxel_id, depth2, raydirs = voxlib.ray_voxel_intersection_perspective(
self.voxel.voxel_t, cam_ori_t, cam_dir_t, cam_up_t, cam_f, cam_c, self.cam_res,
self.num_blocks_early_stop)
voxel_id = voxel_id.unsqueeze(0)
depth2 = depth2.unsqueeze(0)
raydirs = raydirs.unsqueeze(0)
cam_ori_t = cam_ori_t.unsqueeze(0).to(device)
# Save 3D voxel rendering.
mc_rgb = self.label_trans.mc_color(voxel_id[0, :, :, 0, 0].cpu().numpy())
# Diffused shading, co-located light.
first_intersection_depth = depth2[:, 0, :, :, 0, None, :] # [1, 542, 542, 1, 1].
first_intersection_point = raydirs * first_intersection_depth + cam_ori_t[:, None, None, None, :]
fip_local_coords = torch.remainder(first_intersection_point, 1.0)
fip_wall_proximity = torch.minimum(fip_local_coords, 1.0-fip_local_coords)
fip_wall_orientation = torch.argmin(fip_wall_proximity, dim=-1, keepdim=False)
# 0: [1,0,0]; 1: [0,1,0]; 2: [0,0,1]
lut = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float32,
device=fip_wall_orientation.device)
fip_normal = lut[fip_wall_orientation] # [1, 542, 542, 1, 3]
diffuse_shade = torch.abs(torch.sum(fip_normal * raydirs, dim=-1))
mc_rgb = (mc_rgb.astype(np.float) / 255) ** 2.2
mc_rgb = mc_rgb * diffuse_shade[0, :, :, :].cpu().numpy()
mc_rgb = (mc_rgb ** (1/2.2)) * 255
mc_rgb = mc_rgb.astype(np.uint8)
if self.pad > 0:
mc_rgb = mc_rgb[self.pad//2:-self.pad//2, self.pad//2:-self.pad//2]
cv2.imwrite(os.path.join(vis_masks_dir, '{:05d}.png'.format(id)), mc_rgb, [cv2.IMWRITE_PNG_COMPRESSION, 4])
# Tiled eval of GANcraft.
voxel_id_all = voxel_id
depth2_all = depth2
raydirs_all = raydirs
# Evaluate sky in advance to get a consistent sky in the semi-transparent region.
if self.sky_global_avgpool:
sky_raydirs_in = raydirs.expand(-1, -1, -1, 1, -1).contiguous()
sky_raydirs_in = voxlib.positional_encoding(
sky_raydirs_in, self.pe_params_sky[0], -1, self.pe_params_sky[1])
skynet_out_c = self.sky_net(sky_raydirs_in, z)
sky_avg = torch.mean(skynet_out_c, dim=[1, 2], keepdim=True)
self.sky_avg = sky_avg
num_strips_h = (self.cam_res[0]-self.pad+tile_size-1)//tile_size
num_strips_w = (self.cam_res[1]-self.pad+tile_size-1)//tile_size
fake_images_chunks_v = []
fake_depth_chunks_v = []
# For each horizontal strip.
for strip_id_h in range(num_strips_h):
strip_begin_h = strip_id_h * tile_size
strip_end_h = np.minimum(strip_id_h * tile_size + tile_size + self.pad, self.cam_res[0])
# For each vertical strip.
fake_images_chunks_h = []
fake_depth_chunks_h = []
for strip_id_w in range(num_strips_w):
strip_begin_w = strip_id_w * tile_size
strip_end_w = np.minimum(strip_id_w * tile_size + tile_size + self.pad, self.cam_res[1])
voxel_id = voxel_id_all[:, strip_begin_h:strip_end_h, strip_begin_w:strip_end_w, :, :]
depth2 = depth2_all[:, :, strip_begin_h:strip_end_h, strip_begin_w:strip_end_w, :, :]
raydirs = raydirs_all[:, strip_begin_h:strip_end_h, strip_begin_w:strip_end_w, :, :]
net_out, new_dists, weights, total_weights_raw, rand_depth, net_out_s, net_out_c, skynet_out_c, \
nosky_mask, sky_mask, sky_only_mask, new_idx = self._forward_perpix(
self.blk_feats, voxel_id, depth2, raydirs, cam_ori_t, z, global_enc)
fake_images, _ = self._forward_global(net_out, z)
depth_map = torch.sum(weights * rand_depth, -2)
# disp_map = 1. / torch.max(1e-10 * torch.ones_like(depth_map).to(depth_map), depth_map / torch.sum(weights, -2))
# depth_map = torch.clip(depth_map, 0, 100.)
# disp_map = 1. / (depth_map.permute(0, 3, 1, 2))
disp_map = depth_map.permute(0, 3, 1, 2)
if self.pad != 0:
fake_images = fake_images[:, :, self.pad//2:-self.pad//2, self.pad//2:-self.pad//2]
disp_map = disp_map[:, :, self.pad//2:-self.pad//2, self.pad//2:-self.pad//2]
fake_images_chunks_h.append(fake_images)
fake_depth_chunks_h.append(disp_map)
fake_images_h = torch.cat(fake_images_chunks_h, dim=-1)
fake_depth_h = torch.cat(fake_depth_chunks_h, dim=-1)
fake_images_chunks_v.append(fake_images_h)
fake_depth_chunks_v.append(fake_depth_h)
fake_images = torch.cat(fake_images_chunks_v, dim=-2)
fake_depth = torch.cat(fake_depth_chunks_v, dim=-2)
# fake_depth = ((fake_depth - fake_depth.mean()) / fake_depth.std() + 1) / 2
# fake_depth = torch.clip(1./ (fake_depth + 1e-4), 0., 1.)
# fake_depth = ((fake_depth - fake_depth.mean()) / fake_depth.std() + 1) / 2
mmask = fake_depth > 0
tmp = fake_depth[mmask]
# tmp = 1. / (tmp + 1e-4)
tmp = (tmp - tmp.min()) / (tmp.max() - tmp.min())
# tmp = ((tmp - tmp.mean()) / tmp.std() + 1) / 2.
fake_depth[~mmask] = 1
fake_depth[mmask] = tmp
# fake_depth = (fake_depth - fake_depth.min()) / (fake_depth.max() - fake_depth.min())
cv2.imwrite(os.path.join(gancraft_depth_outputs_dir, '{:05d}.png'.format(id)), fake_depth[0].permute(1, 2, 0).detach().cpu().numpy() * 255)
rgb = write_img(os.path.join(gancraft_outputs_dir,
'{:05d}.png'.format(id)), fake_images, rgb_input=True)
fout.append_data(rgb)
fout_cat.append_data(np.concatenate((mc_rgb[..., ::-1], rgb), axis=1))
fout.close()
fout_cat.close()
|