File size: 10,691 Bytes
aac64a6
 
4667b7d
aac64a6
12c8918
4667b7d
aac64a6
 
 
 
 
 
 
 
 
 
 
b6ed54a
 
 
 
aac64a6
 
 
 
 
12c8918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85e33e
aac64a6
 
 
 
 
 
d85e33e
aac64a6
 
 
 
 
 
 
 
4667b7d
 
 
 
 
 
d85e33e
 
 
 
 
aac64a6
 
 
 
 
d85e33e
4667b7d
d85e33e
4667b7d
 
 
d85e33e
aac64a6
 
4667b7d
 
 
aac64a6
4667b7d
 
 
aac64a6
4667b7d
d85e33e
 
aac64a6
4667b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac64a6
 
 
 
 
 
 
 
 
 
 
 
 
 
12c8918
 
 
 
 
 
 
 
 
 
 
 
aac64a6
 
4667b7d
aac64a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c8918
 
 
 
aac64a6
 
 
 
 
 
 
 
 
 
 
 
 
d85e33e
 
 
 
 
895116b
d85e33e
aac64a6
 
 
 
 
 
 
 
 
 
 
 
 
12c8918
 
 
 
aac64a6
 
 
 
 
 
 
 
 
 
 
 
 
d85e33e
 
 
 
 
895116b
d85e33e
aac64a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85e33e
4667b7d
 
aac64a6
 
12c8918
 
 
 
 
 
 
 
 
 
 
 
 
 
aac64a6
 
 
 
 
 
 
 
 
 
 
 
 
4667b7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import gradio as gr
import asyncio
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, hf_hub_download, model_info
from functools import partial

# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

if not HF_TOKEN:
    raise ValueError("Please set HF_TOKEN environment variable")

# Available models
AVAILABLE_MODELS = [
    "HuggingFaceH4/zephyr-7b-beta",
    "NousResearch/Hermes-3-Llama-3.1-8B",
    "mistralai/Mistral-Nemo-Base-2407",
    "meta-llama/Llama-2-70b-hf",
    "aaditya/Llama3-OpenBioLLM-8B",
]

# Initialize inference client
inference_client = InferenceClient(token=HF_TOKEN)

def get_model_card_html(model_name, title):
    """Fetch and format model card information."""
    try:
        info = model_info(model_name, token=HF_TOKEN)
        
        return f"""
<div class="model-card-container">
    <h3>{info.modelId}</h3>
    <p><strong>Pipeline Tag:</strong> {info.pipeline_tag or 'Not specified'}</p>
    <p><strong>Downloads:</strong> {info.downloads:,}</p>
    <p><strong>Likes:</strong> {info.likes:,}</p>
    <p><a href="https://huggingface.co/{model_name}" target="_blank">View on Hugging Face</a></p>
</div>
"""
    except Exception as e:
        return f"""
<div class="model-card-container">
    <h3>{model_name}</h3>
    <p>Unable to load full model card information.</p>
    <p><a href="https://huggingface.co/{model_name}" target="_blank">View on Hugging Face</a></p>
</div>
"""

async def get_model_response(prompt, model_name, temperature_value, do_sample, max_tokens):
    """Get response from a Hugging Face model."""
    try:
        # Build kwargs dynamically
        generation_args = {
            "prompt": prompt,
            "model": model_name,
            "max_new_tokens": max_tokens,
            "do_sample": do_sample,
            "return_full_text": False
        }

        # Only include temperature if sampling is enabled
        if do_sample and temperature_value > 0:
            generation_args["temperature"] = temperature_value

        # Run the inference in a thread pool to not block the event loop
        loop = asyncio.get_event_loop()
        response = await loop.run_in_executor(
            None, 
            partial(inference_client.text_generation, **generation_args)
        )
        
        # Check if response might be truncated
        if len(response) >= max_tokens * 4:  # Rough estimate of tokens to characters ratio
            response += "\n\n[Warning: Response may have been truncated. Try increasing the max tokens if the response seems incomplete.]"
            
        return response

    except Exception as e:
        return f"Error: {str(e)}"

async def process_single_response(prompt, model_name, temp, do_sample, max_tokens, chatbot):
    """Process a single model response and update its chatbot."""
    response = await get_model_response(prompt, model_name, temp, do_sample, max_tokens)
    chat_history = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response}]
    return chat_history

async def compare_models(prompt, model1, model2, temp1, temp2, do_sample1, do_sample2, max_tokens1, max_tokens2):
    """Compare outputs from two selected models."""
    if not prompt.strip():
        empty_response = [{"role": "user", "content": prompt}, {"role": "assistant", "content": "Please enter a prompt"}]
        yield empty_response, empty_response, gr.update(interactive=True)
        return  # Exit the generator
    
    # Initialize with "Generating..." messages
    initial_message = [{"role": "user", "content": prompt}, {"role": "assistant", "content": "Generating..."}]
    yield initial_message, initial_message, gr.update(interactive=False)
    
    # Create tasks for both model responses
    task1 = asyncio.create_task(process_single_response(prompt, model1, temp1, do_sample1, max_tokens1, "chatbot1"))
    task2 = asyncio.create_task(process_single_response(prompt, model2, temp2, do_sample2, max_tokens2, "chatbot2"))
    
    chat1 = chat2 = initial_message
    start_time = asyncio.get_event_loop().time()
    
    try:
        while not (task1.done() and task2.done()):
            # Update the messages with elapsed time
            elapsed = round(asyncio.get_event_loop().time() - start_time, 1)
            chat1_content = chat1[1]["content"]
            chat2_content = chat2[1]["content"]
            
            if not task1.done():
                chat1 = [{"role": "user", "content": prompt}, 
                        {"role": "assistant", "content": f"Generating... ({elapsed:.1f}s)"}]
            if not task2.done():
                chat2 = [{"role": "user", "content": prompt}, 
                        {"role": "assistant", "content": f"Generating... ({elapsed:.1f}s)"}]
            
            # Check if any task completed
            done, pending = await asyncio.wait([t for t in [task1, task2] if not t.done()], 
                                             timeout=0.1,
                                             return_when=asyncio.FIRST_COMPLETED)
            
            for task in done:
                if task == task1:
                    chat1 = await task1
                else:
                    chat2 = await task2
            
            yield chat1, chat2, gr.update(interactive=False)
        
        # Ensure we have both final results
        if not task1.done():
            chat1 = await task1
        if not task2.done():
            chat2 = await task2
            
        # Final yield with both results
        yield chat1, chat2, gr.update(interactive=True)
        
    except Exception as e:
        error_message = [{"role": "user", "content": prompt}, {"role": "assistant", "content": f"Error: {str(e)}"}]
        yield error_message, error_message, gr.update(interactive=True)

# Update temperature slider interactivity based on sampling checkbox
def update_slider_state(enabled):
    return [
        gr.update(interactive=enabled),
        gr.update(
            elem_classes=[] if enabled else ["disabled-slider"],
            value=0 if not enabled else None
        )
    ]

# Create the Gradio interface
with gr.Blocks(css="""
    .disabled-slider { opacity: 0.5; pointer-events: none; }
    .model-card-container {
        background-color: #f8f9fa;
        font-size: 14px;
        color: #666;
    }
    .model-card-container h3 {
        margin: 0;
        color: black;
    }
    .model-card-container p {
        margin: 5px 0;
    }
""") as demo:
    gr.Markdown("# LLM Comparison Tool")
    gr.Markdown("Using HuggingFace's Inference API, compare outputs from different `text-generation` models side by side.")
    
    with gr.Row():
        prompt = gr.Textbox(
            label="Enter your prompt",
            placeholder="Type your prompt here...",
            lines=3
        )
    
    with gr.Row():
        submit_btn = gr.Button("Generate Responses")
        
    with gr.Row():
        with gr.Column():
            model1_dropdown = gr.Dropdown(
                choices=AVAILABLE_MODELS,
                value=AVAILABLE_MODELS[0],
                label="Select Model 1"
            )
            model1_card = gr.HTML(
                value=get_model_card_html(AVAILABLE_MODELS[0], "Model 1 Information"),
                elem_classes=["model-card-container"]
            )
            do_sample1 = gr.Checkbox(
                label="Enable sampling (random outputs)",
                value=False
            )
            temp1 = gr.Slider(
                label="Temperature (Higher = more creative, lower = more predictable)",
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.0,
                interactive=False,
                elem_classes=["disabled-slider"]
            )
            max_tokens1 = gr.Slider(
                label="Maximum new tokens in response",
                minimum=10,
                maximum=2000,
                step=10,
                value=10
            )
            chatbot1 = gr.Chatbot(
                label="Model 1 Output",
                show_label=True,
                height=300,
                type="messages"
            )
            
        with gr.Column():
            model2_dropdown = gr.Dropdown(
                choices=AVAILABLE_MODELS,
                value=AVAILABLE_MODELS[1],
                label="Select Model 2"
            )
            model2_card = gr.HTML(
                value=get_model_card_html(AVAILABLE_MODELS[1], "Model 2 Information"),
                elem_classes=["model-card-container"]
            )
            do_sample2 = gr.Checkbox(
                label="Enable sampling (random outputs)",
                value=False
            )
            temp2 = gr.Slider(
                label="Temperature (Higher = more creative, lower = more predictable)",
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.0,
                interactive=False,
                elem_classes=["disabled-slider"]
            )
            max_tokens2 = gr.Slider(
                label="Maximum new tokens in response",
                minimum=10,
                maximum=2000,
                step=10,
                value=10
            )
            chatbot2 = gr.Chatbot(
                label="Model 2 Output",
                show_label=True,
                height=300,
                type="messages"
            )

    def start_loading():
        return gr.update(interactive=False)

    # Handle form submission
    submit_btn.click(
        fn=start_loading,
        inputs=None,
        outputs=submit_btn,
        queue=False
    ).then(
        fn=compare_models,
        inputs=[prompt, model1_dropdown, model2_dropdown, temp1, temp2, do_sample1, do_sample2, max_tokens1, max_tokens2],
        outputs=[chatbot1, chatbot2, submit_btn],
        queue=True  # Enable queuing for streaming updates
    )

    # Update model cards when models are changed
    model1_dropdown.change(
        fn=lambda x: get_model_card_html(x, "Model 1 Information"),
        inputs=[model1_dropdown],
        outputs=[model1_card]
    )

    model2_dropdown.change(
        fn=lambda x: get_model_card_html(x, "Model 2 Information"),
        inputs=[model2_dropdown],
        outputs=[model2_card]
    )

    # Existing event handlers
    do_sample1.change(
        fn=update_slider_state,
        inputs=[do_sample1],
        outputs=[temp1, temp1]
    )

    do_sample2.change(
        fn=update_slider_state,
        inputs=[do_sample2],
        outputs=[temp2, temp2]
    )

if __name__ == "__main__":
    demo.queue().launch()